

Generalized minimal absent words of multiple strings

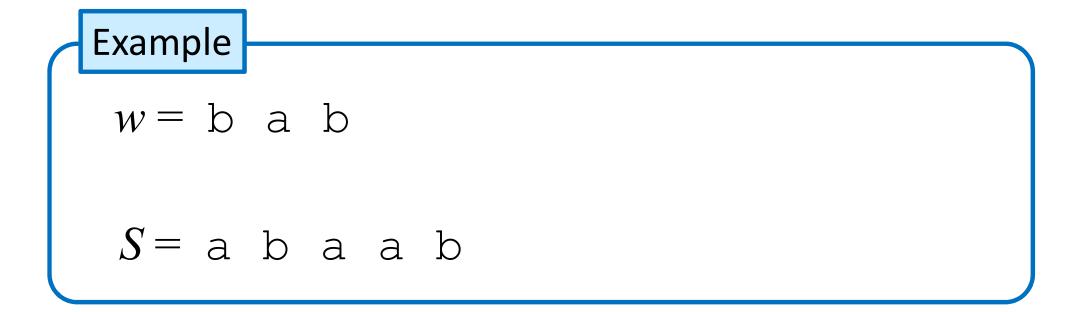
Kouta Okabe¹, Takuya Mieno², Yuto Nakashima¹, <u>Shunsuke Inenaga¹</u>, Hideo Bannai³

¹ Kyushu University

- ² University of Electro-Communications
- ³ Tokyo Medical and Dental University

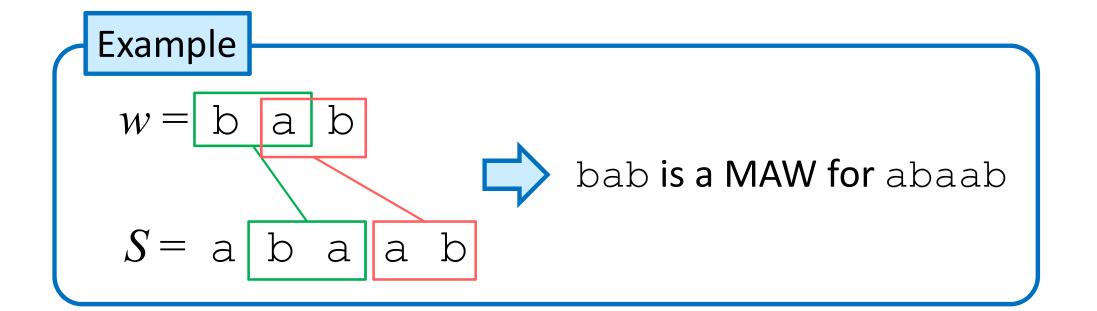
Minimal Absent Words (MAWs) [1/2]

- A string w over an alphabet Σ is called
 a Minimal Absent Word (MAW) for a string S, if:
 - 1. w is a character from Σ not occurring in S, or
 - 2. w = aub $(a, b \in \Sigma, u \in \Sigma^*)$ does not occur in *S*, but both *au* and *ub* occur in *S*.



Minimal Absent Words (MAWs) [1/2]

- A string w over an alphabet Σ is called
 a Minimal Absent Word (MAW) for a string S, if:
 - 1. w is a character from Σ not occurring in S, or
 - 2. w = aub $(a, b \in \Sigma, u \in \Sigma^*)$ does not occur in *S*, but both *au* and *ub* occur in *S*.



Minimal Absent Words (MAWs) [2/2]

\square MAW(S) denotes the set of MAWs for a string S.

Example
$$S = abaab$$
 $\Sigma = \{a, b, c\}$ MAW(S) = {aaa, aaba, bab, bb, c}

■ The <u>number |MAW(S)| of MAWs</u> for a string *S* of length *n* over an alphabet of size σ is $O(\sigma n)$, and there is a matching lower bound [Crochemore et al. 1998].

Symmetric Difference of MAWs of Two Strings

- A string similarity measure based on <u>the symmetric difference MAW(S_1) \triangle MAW(S_2) of MAWs for two input strings S_1 and S_2 has been proposed [Chairungsee & Crochemore, 2012].</u>
- Enumeration: $MAW(S_1) \triangle MAW(S_2)$ can be computed in $\underline{O(\sigma n)}$ time and space [Charalampopoulos et al., 2018].
- Counting: The cardinality $|MAW(S_1) \triangle MAW(S_2)|$ can be computed in $\underline{O(n)}$ time for integer alphabets [Charalampopoulos, Crochemore, Pissis, 2018].

Our Starting Point

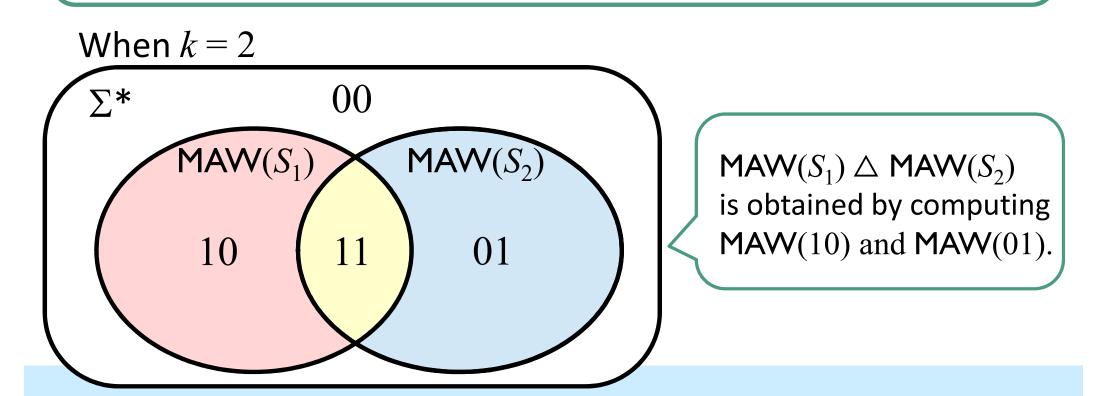
Can we compute all elements of $MAW(S_1) \triangle MAW(S_2)$ in optimal $O(n + |MAW(S_1) \triangle MAW(S_2)|)$ time?

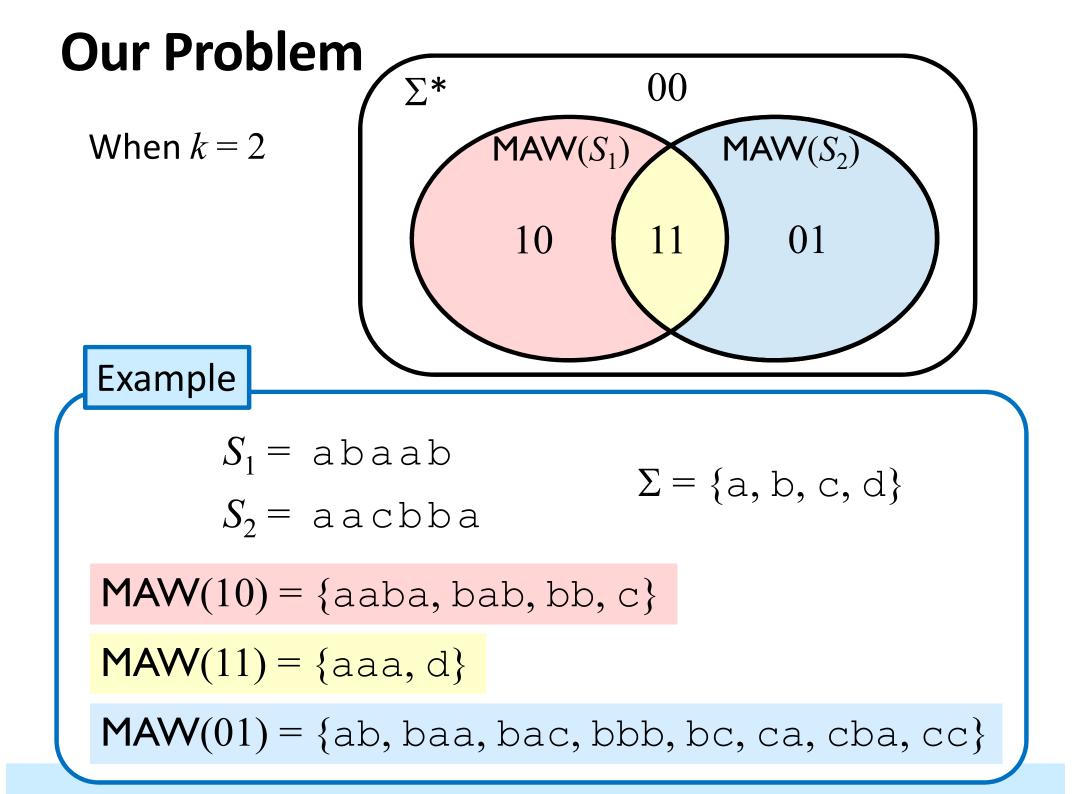
Our Problem

• We extend the notion of MAWs to $k \ge 2$ strings as follows:

Problem 1

Input: Set $\mathbf{S} = \{S_1, ..., S_k\}$ of k strings of total length nand a bit vector \mathbf{B} of length k. Output: MAW(\mathbf{B}) = $\{w \mid w \text{ is a MAW for string } S_i \text{ iff } \mathbf{B}[i] = 1\}$.





Our Contributions

Problem 1

Input: Set $\mathbf{S} = \{S_1, ..., S_k\}$ of k strings of total length nand a bit vector \mathbf{B} of length k. Output: MAW(\mathbf{B}) = $\{w \mid w \text{ is a MAW for string } S_i \text{ iff } \mathbf{B}[i] = 1\}$.

Theorem 1

For k = 2, we can solve Problem 1

in optimal O(n + |MAW(B)|) time with O(n) working space.

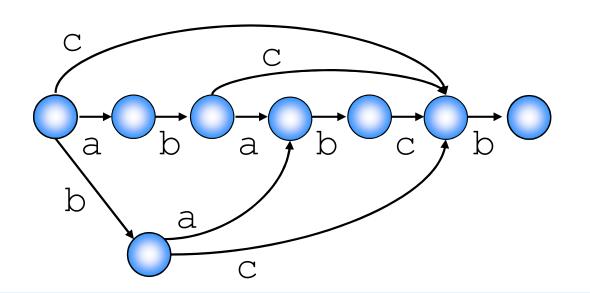
Theorem 2

For general k > 2, we can solve Problem 1 in $O\left(n\left[\frac{k}{\log n}\right] + |\mathsf{MAW}(\mathbf{B})|\right)$ time with O(n) working space.

Computing MAWs with DAWG [1/2]

Previous algorithms [Crochemore et al. 1998, Fujishige et al. 2016] for computing MAWs for a single string S use
 DAWG (Directed Acyclic Word Graph) for S, which is an O(n)-size automaton representing all substrings of S.

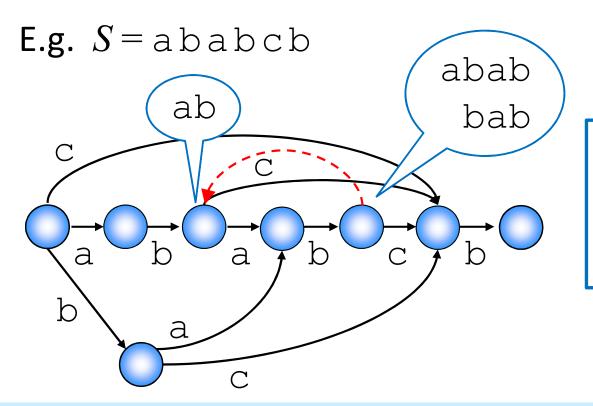
E.g. S = ababcb



Substrings are represented by the same node of DAWG(S) iff they have the same ending position(s) in S.

Computing MAWs with DAWG [1/2]

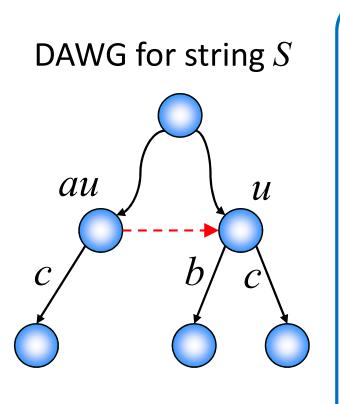
Previous algorithms [Crochemore et al. 1998, Fujishige et al. 2016] for computing MAWs for a single string S use
 DAWG (Directed Acyclic Word Graph) for S, which is an O(n)-size automaton representing all substrings of S.



Substrings are represented by the same node of DAWG(S)iff they have the same ending position(s) in S.

Computing MAWs with DAWG [1/2]

□ If the edges of DAWG are sorted, then one can compute MAW(S) in O(n + |MAW(S)|) time [Fujishige et al. 2016].



- Consider each pair of nodes *au* and *u* which are connected by a suffix link, where *a* is a character and *u* is a string.
- Compare the labels of the out-edges of nodes *au* and *u* in sorted order.
 - For b: au has no out-edge with b,
 but u has an out-edge with b.
 - \rightarrow <u>*aub*</u> is a MAW for the input string S.
 - ◆ For c: both au and u have out-edges with c
 → <u>auc is not a MAW</u> for the input string S, but this cost of character comparisons can be charged to this out-edge of au labeled c.

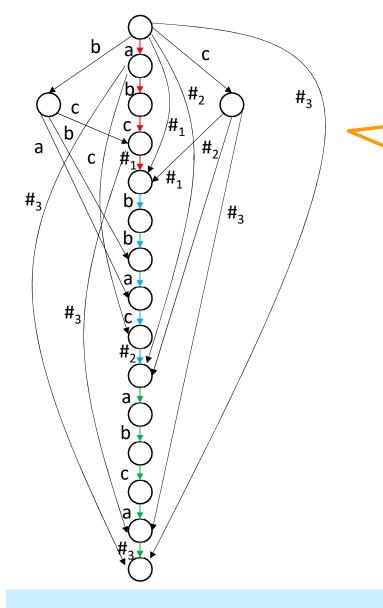
The best known algorithm for building the DAWG for <u>multiple strings</u> takes $O(n \log \sigma)$ time [Blumer et al. 1985].

Lemma 1

The DAWG for a set $\mathbf{S} = \{S_1 \#_1, ..., S_k \#_k\}$ of k strings of total length n can be built in O(n) time for integer alphabets.

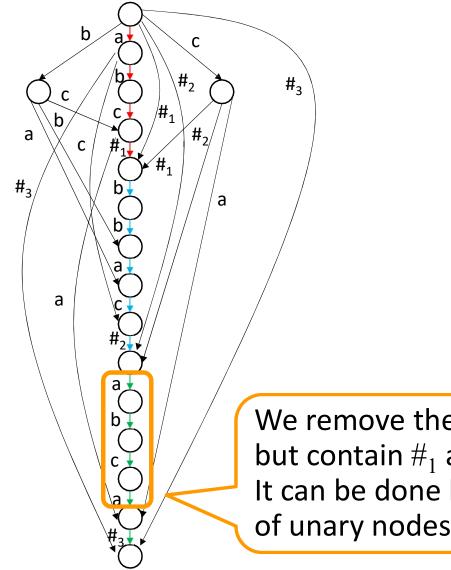
- 1. We build the DAWG for the concatenated string $T = S_1 \#_1 \cdots S_k \#_k$ in O(n) time by the DAWG-construction algorithm of Fujishige et al. (2016) for a single string.
- **2**. We convert the DAWG for *T* to the DAWG for **S** in O(n) time.

$T = abc\#_1 bbac\#_2 abca\#_3$



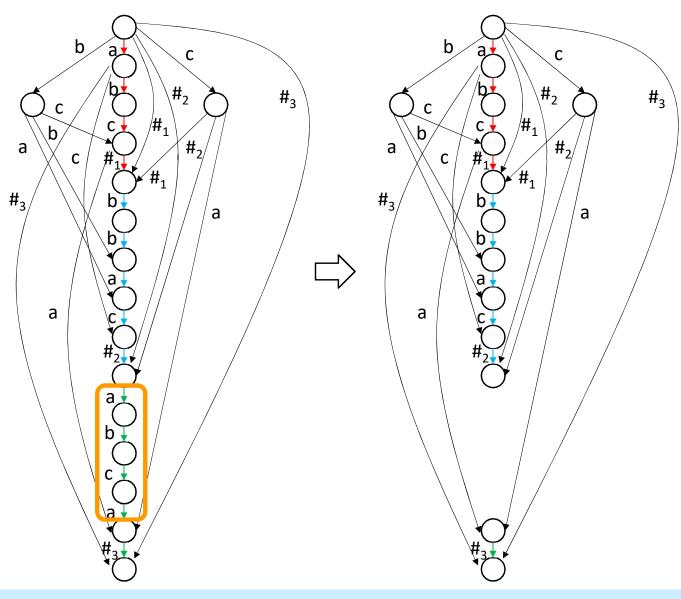
We first build the DAWG for the concatenated string *T*.

 $T = abc\#_1 bbac\#_2 abca\#_3$

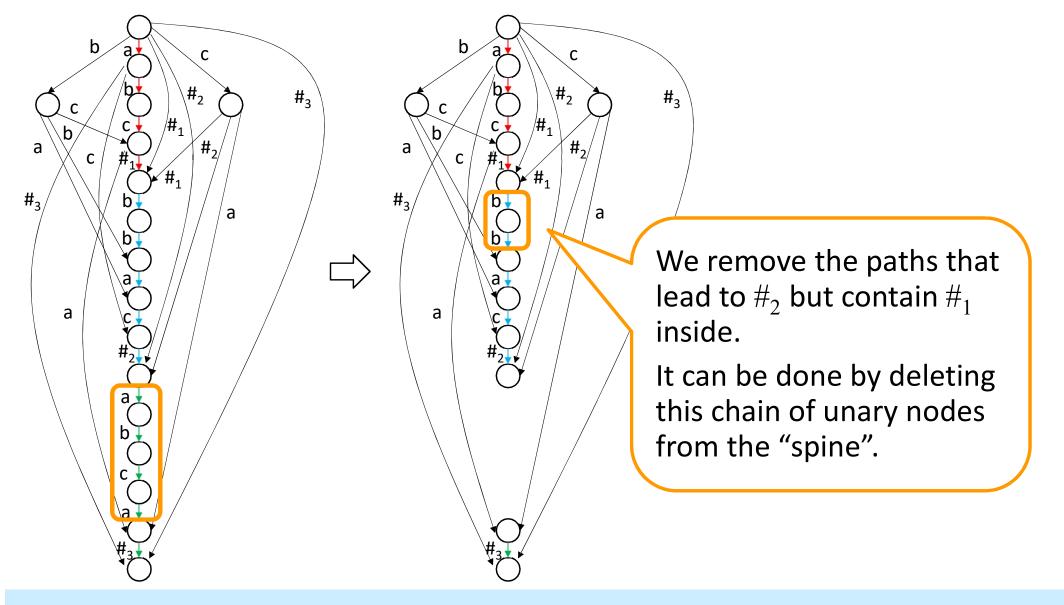


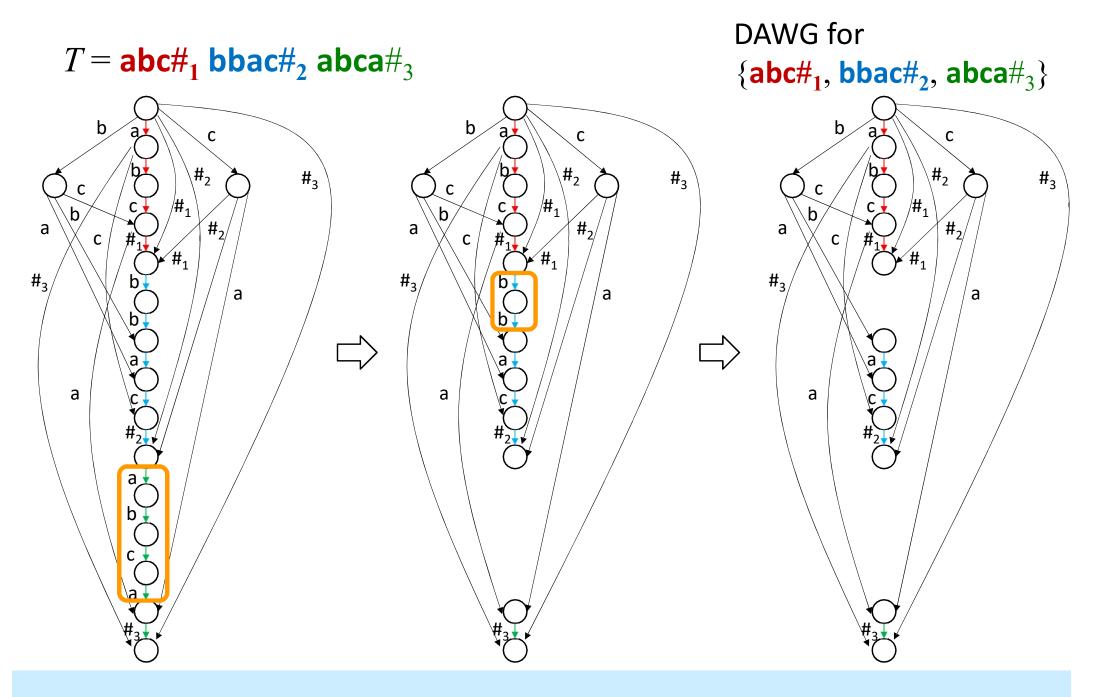
We remove the paths that lead to $\#_3$ but contain $\#_1$ and/or $\#_2$ inside. It can be done by deleting this chain of unary nodes from the "spine".

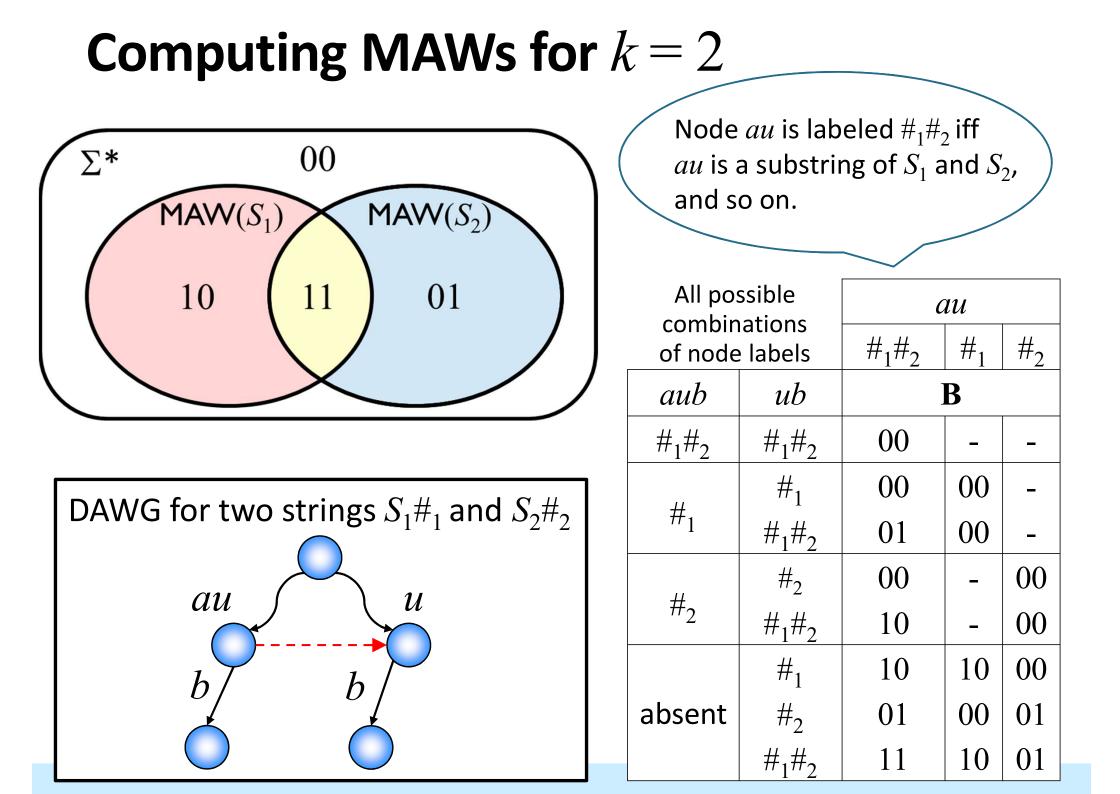
 $T = abc\#_1 bbac\#_2 abca\#_3$



 $T = abc\#_1 bbac\#_2 abca\#_3$

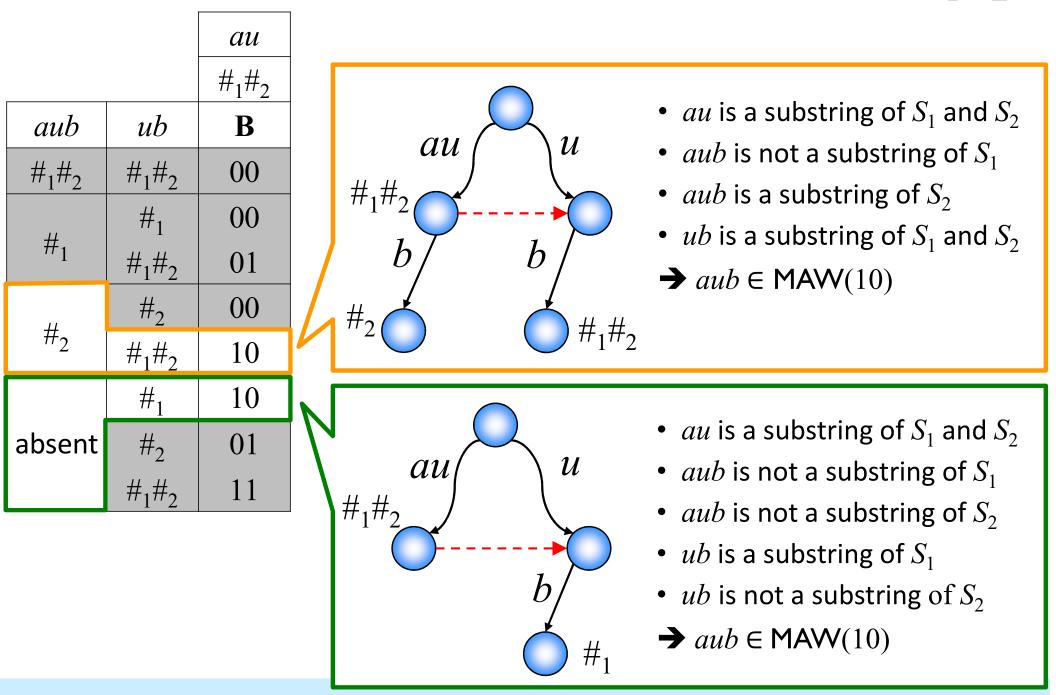


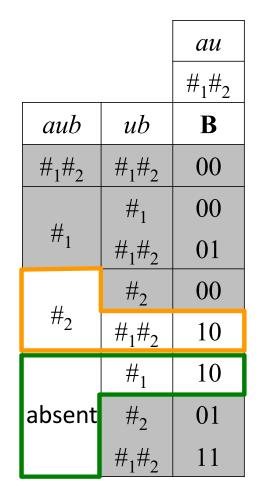


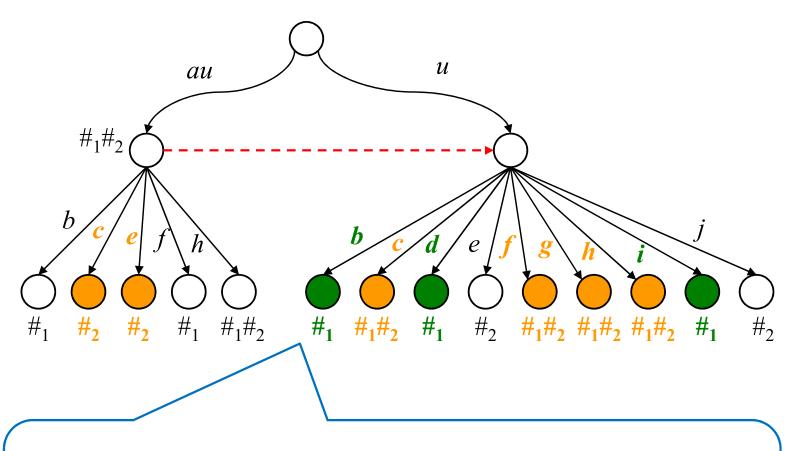


Case where $\mathbf{B} = 10$ Node *au* is labeled $\#_1 \#_2$ iff Σ* 00 au is a substring of S_1 and S_2 , and so on. $MAW(S_2)$ $MAW(S_1)$ 10 01 11 All possible $\mathcal{A}\mathcal{U}$ combinations $\#_1 \#_2$ $\#_1$ $\#_{2}$ of node labels B aub ub $\#_1 \#_2$ $\#_1 \#_2$ 00 00 00 $\#_1$ DAWG for two strings $S_1 \#_1$ and $S_2 \#_2$ $\#_1$ $\#_1 \#_2$ 01 00 $\#_{2}$ 00 00 $\mathcal{A}\mathcal{U}$ \mathcal{U} $\#_{2}$ $\#_1 \#_2$ 10 00 — 10 00 $\#_1$ 10 h h absent 01 00 01 $\#_{2}$ $\#_1 \#_2$ 11 10 01

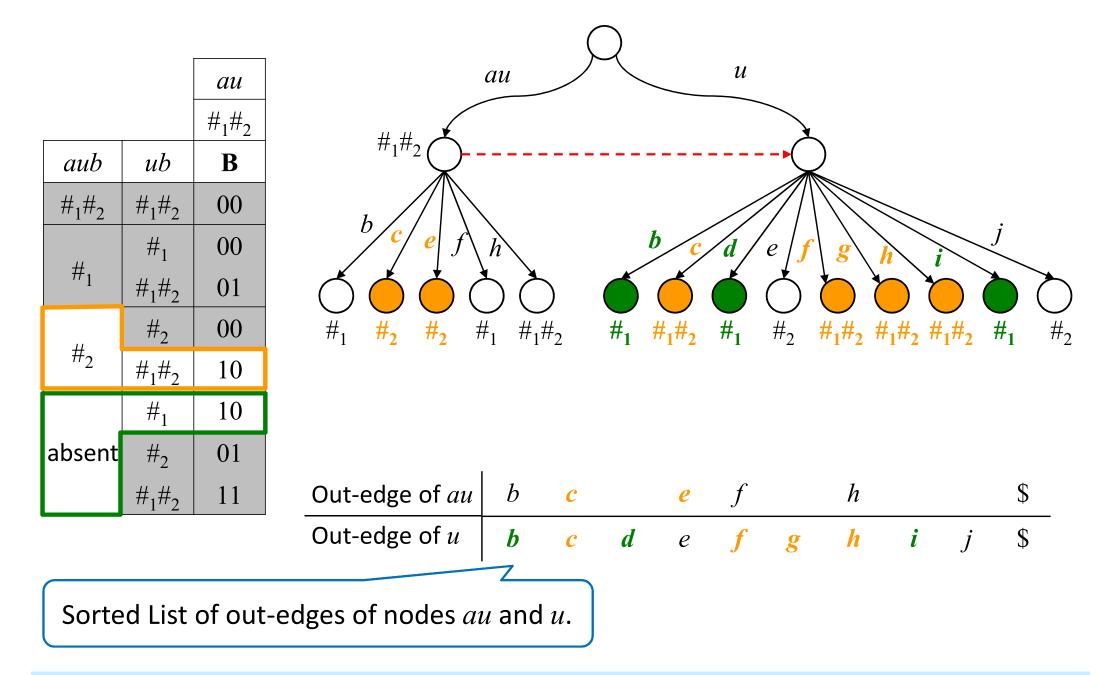
Case where $\mathbf{B} = 10$ **and** au **is labeled** $\#_1 \#_2$

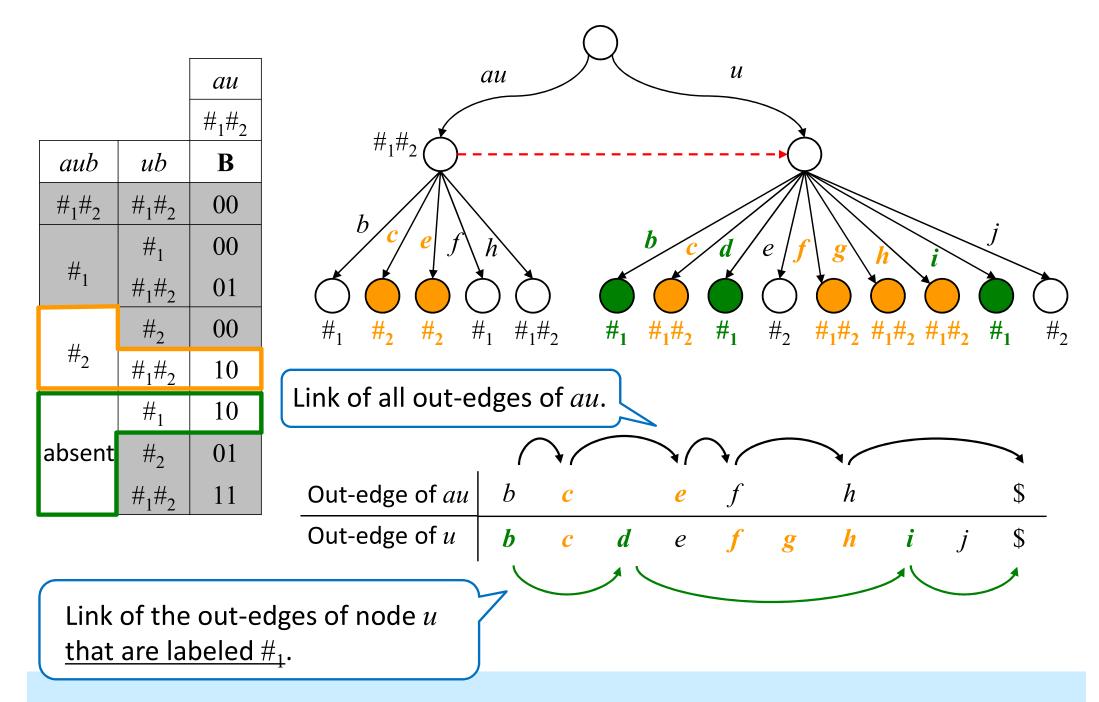


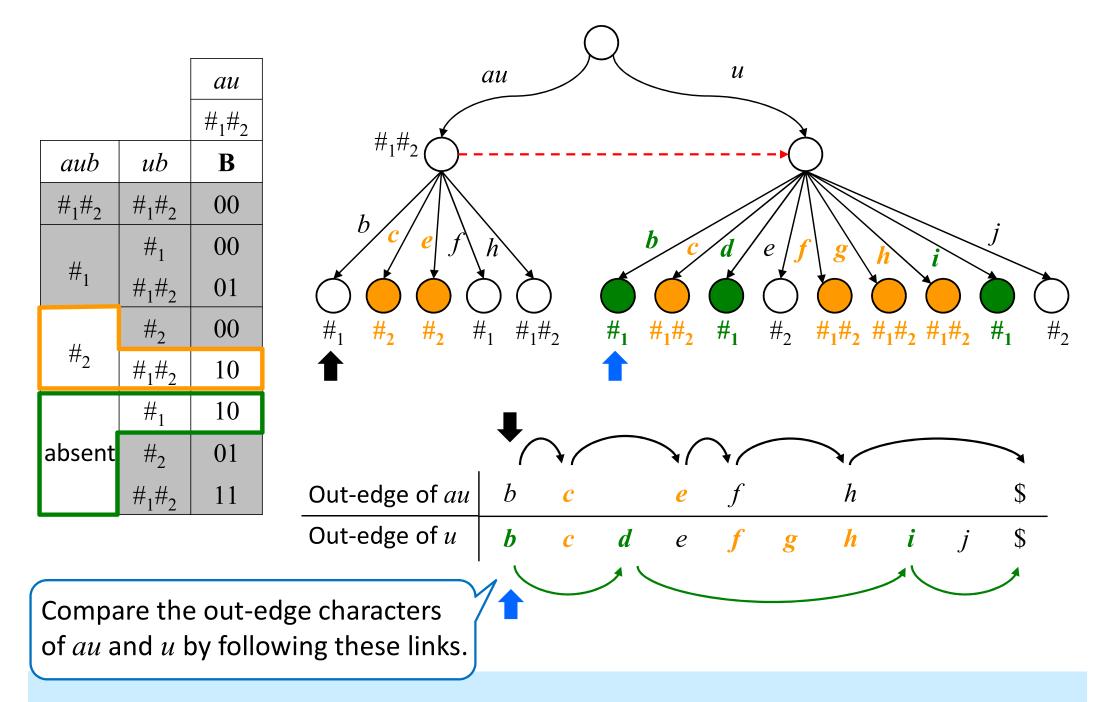


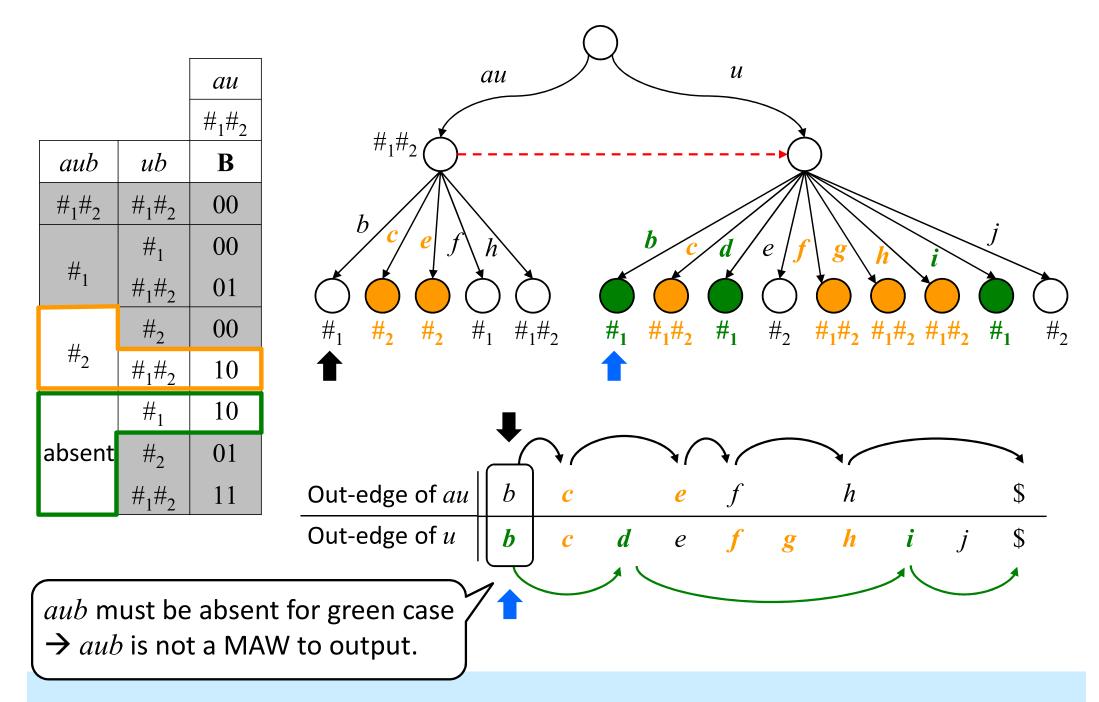


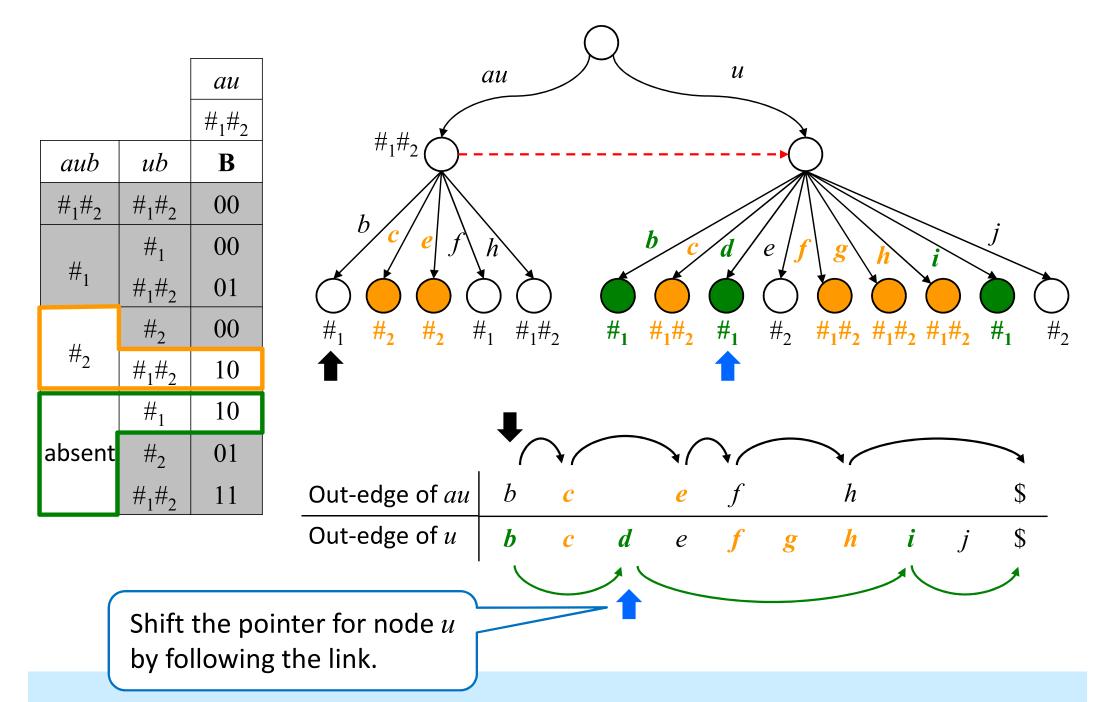
Here we highlight the out-edges of nodes *au* and *u* which meet <u>necessary conditions</u> for the orange/green cases shown in the table.

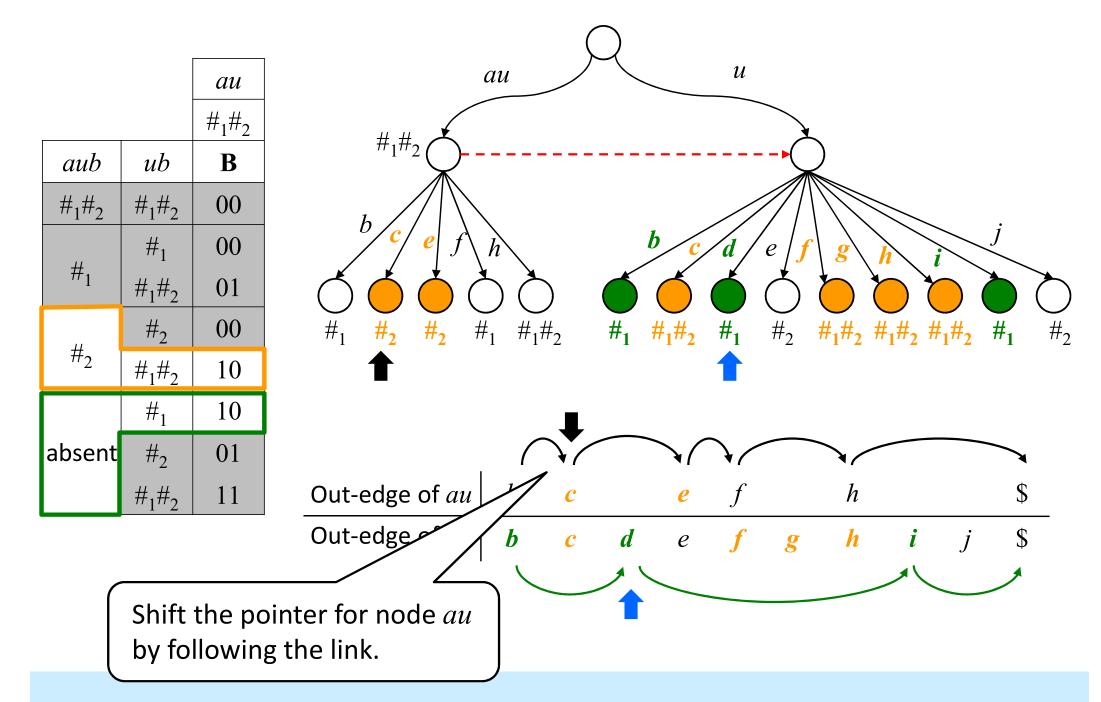


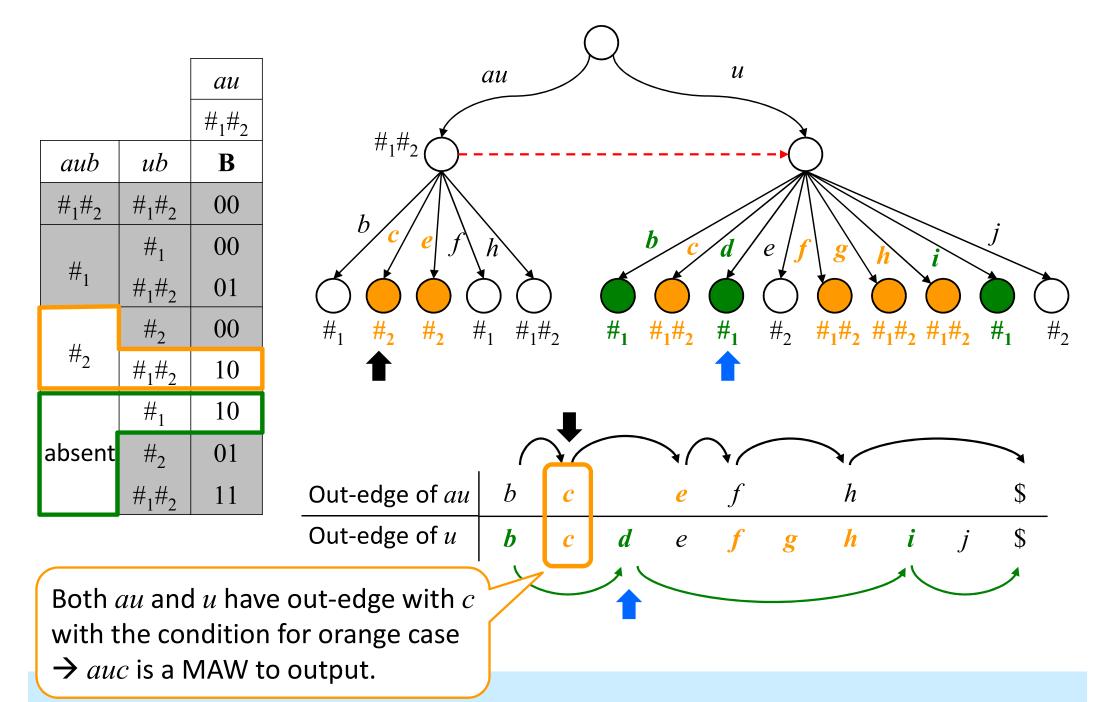


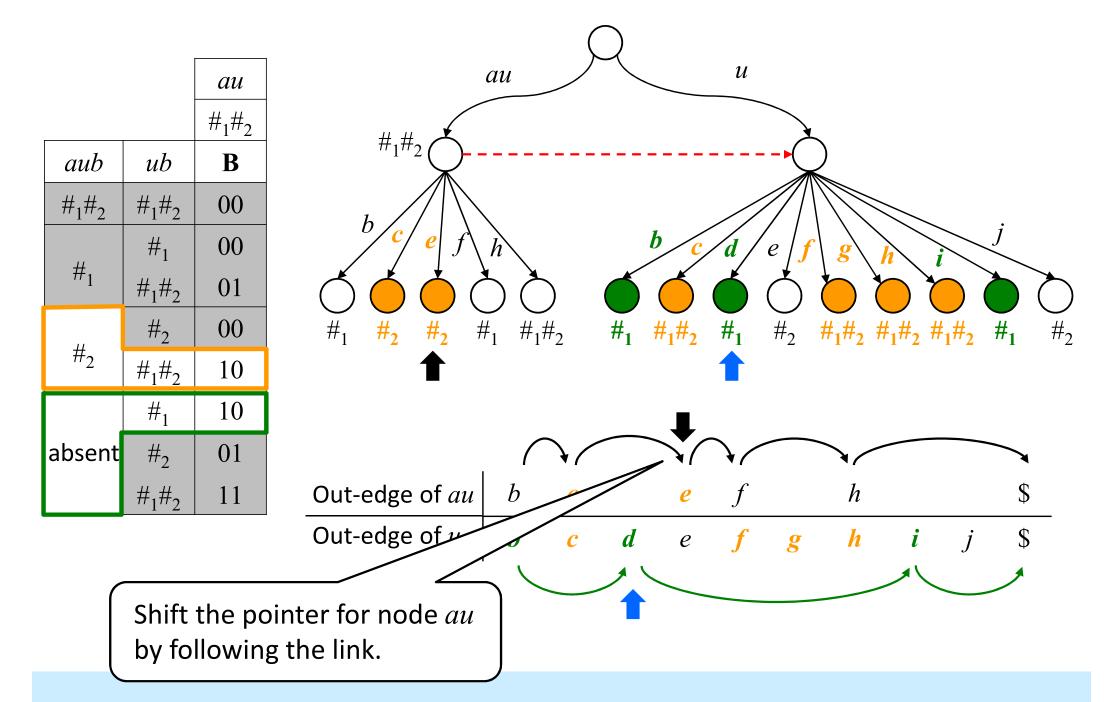


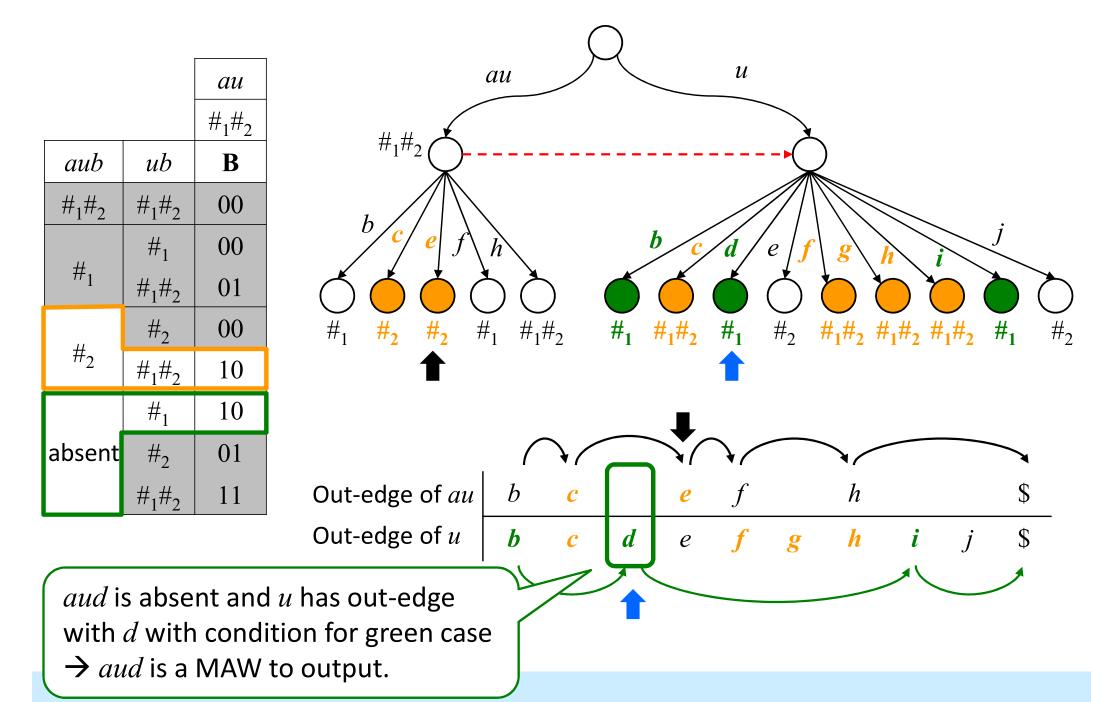


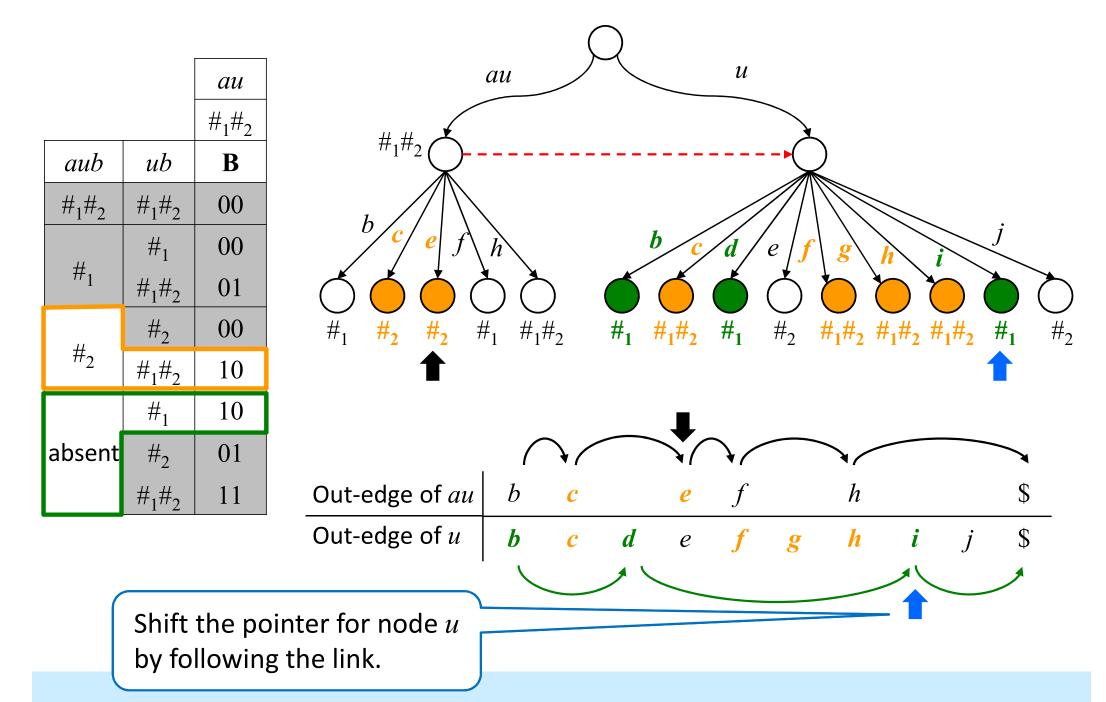


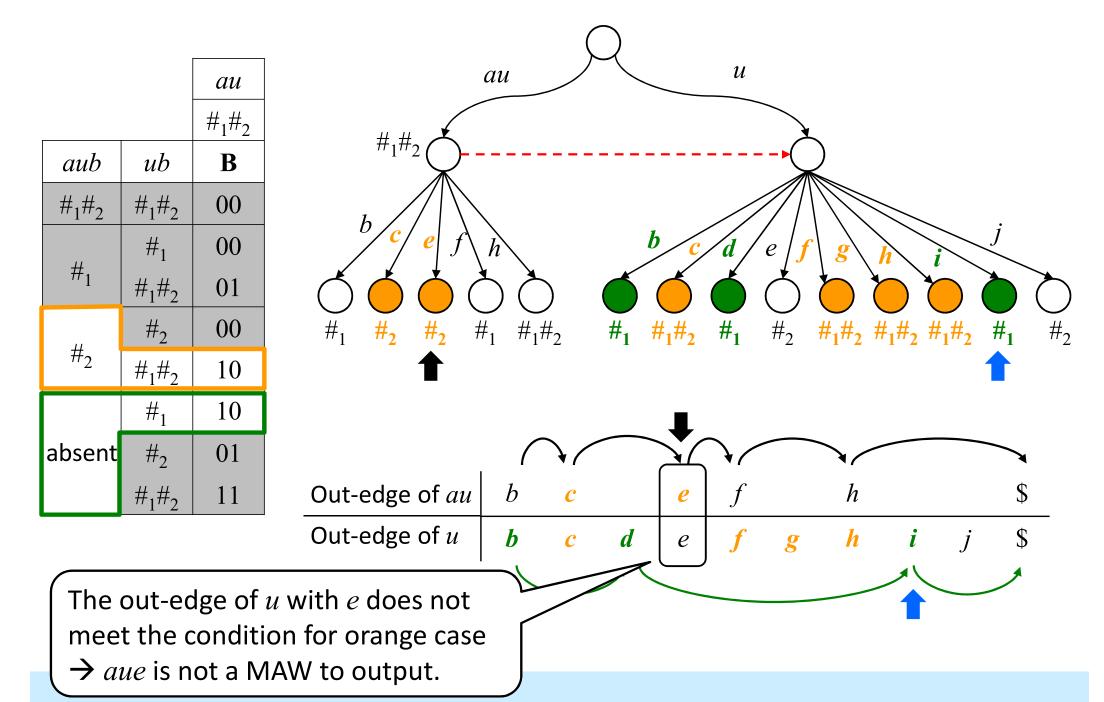


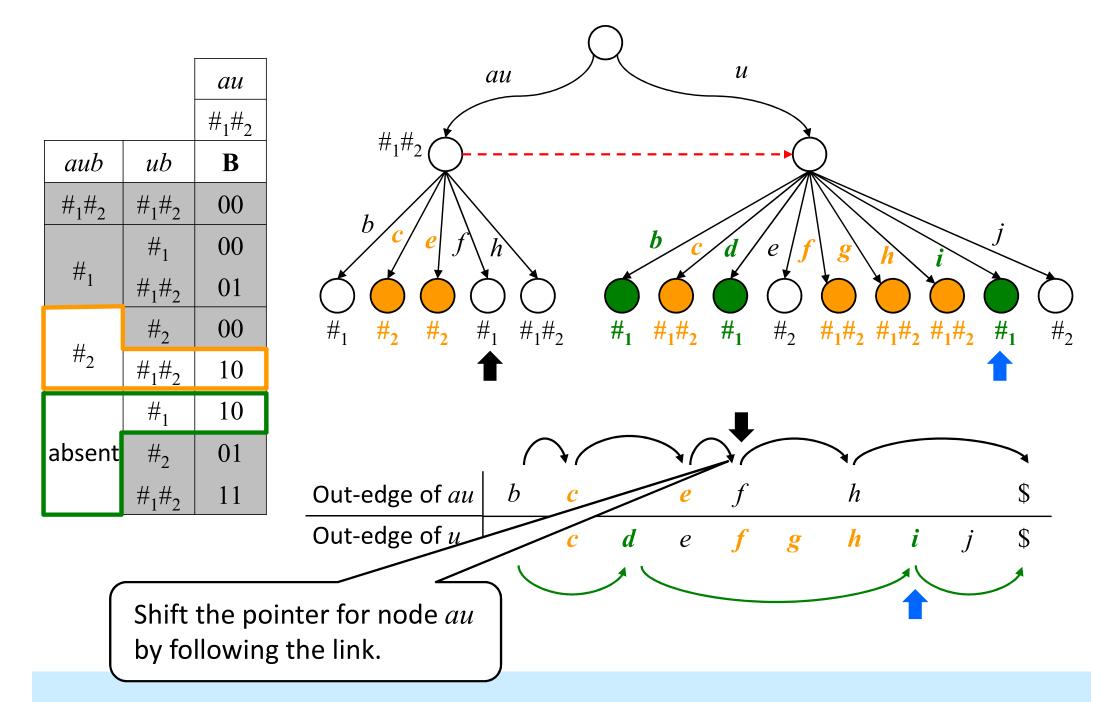


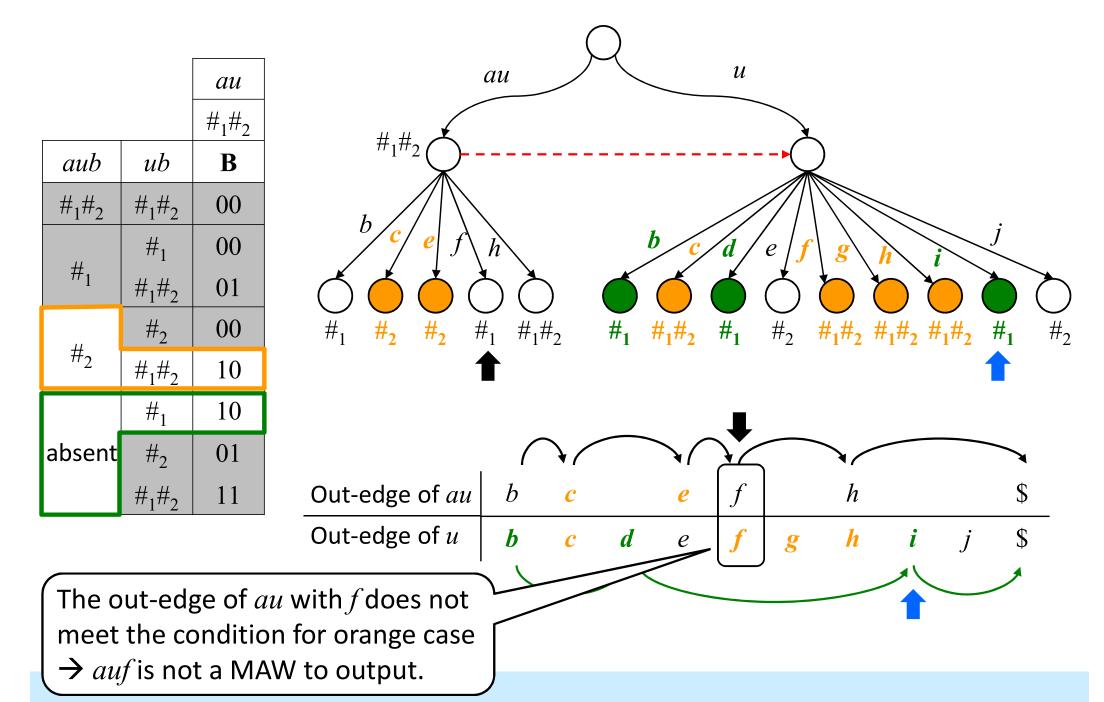


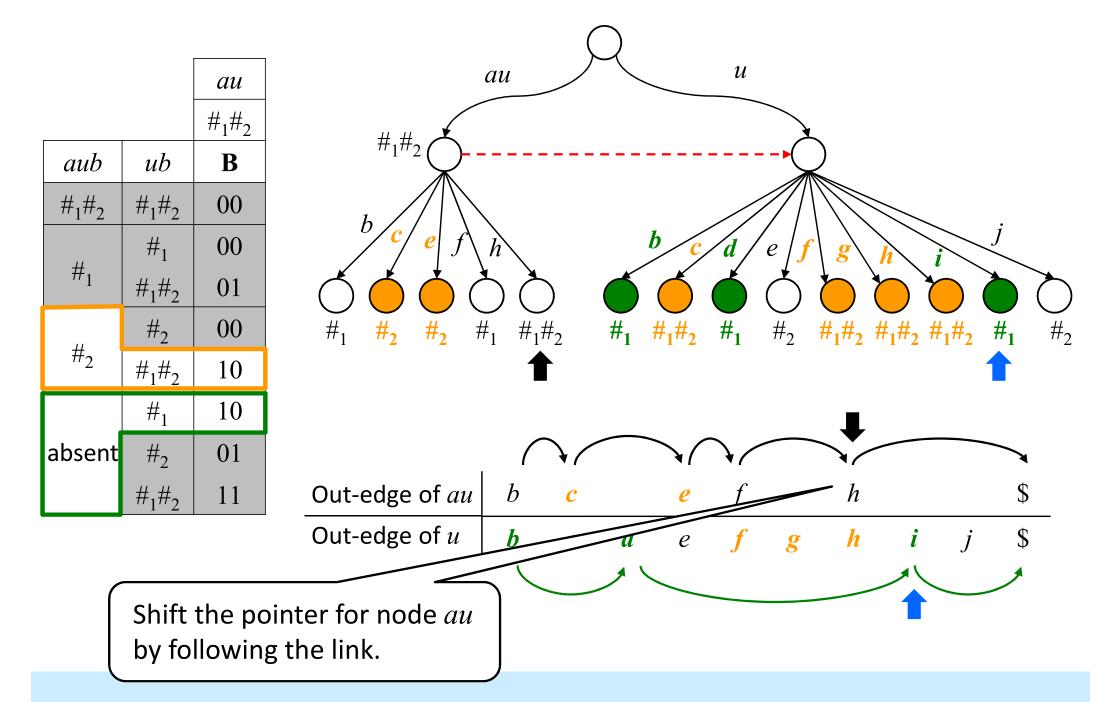


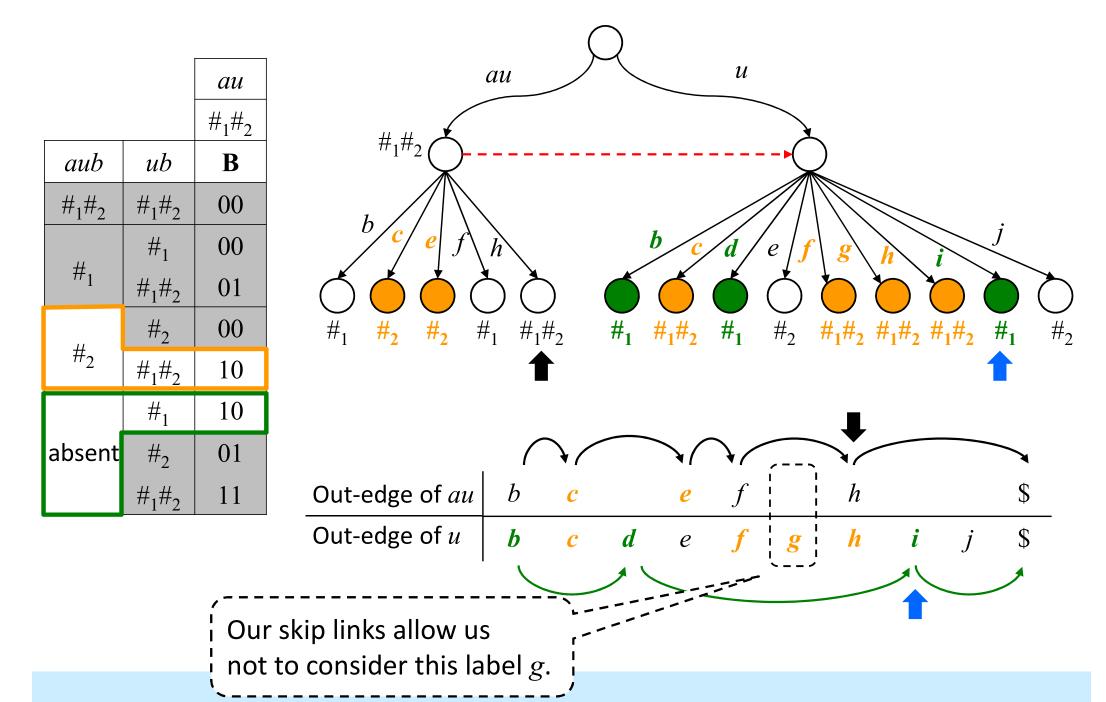


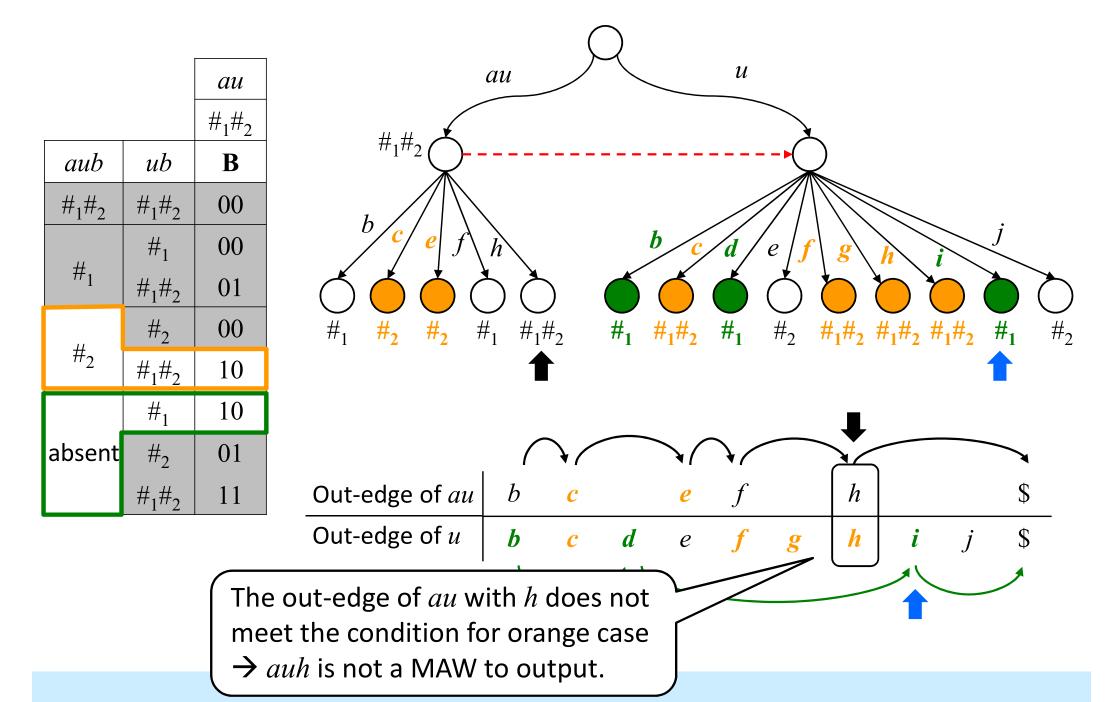


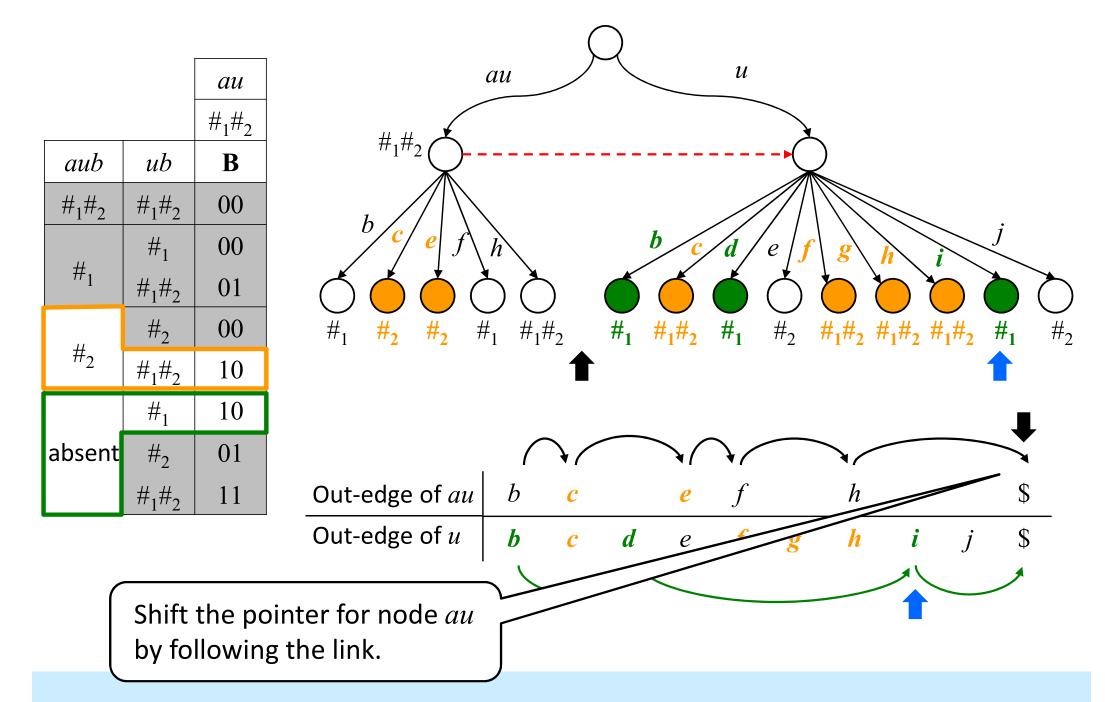


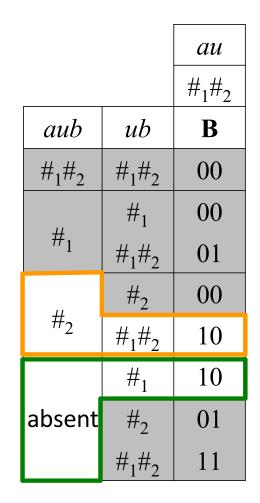


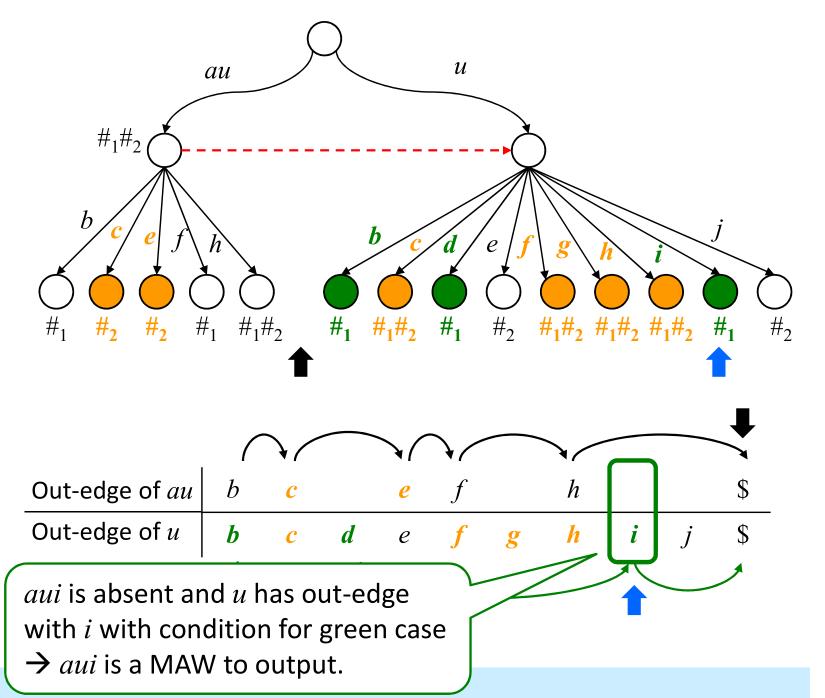


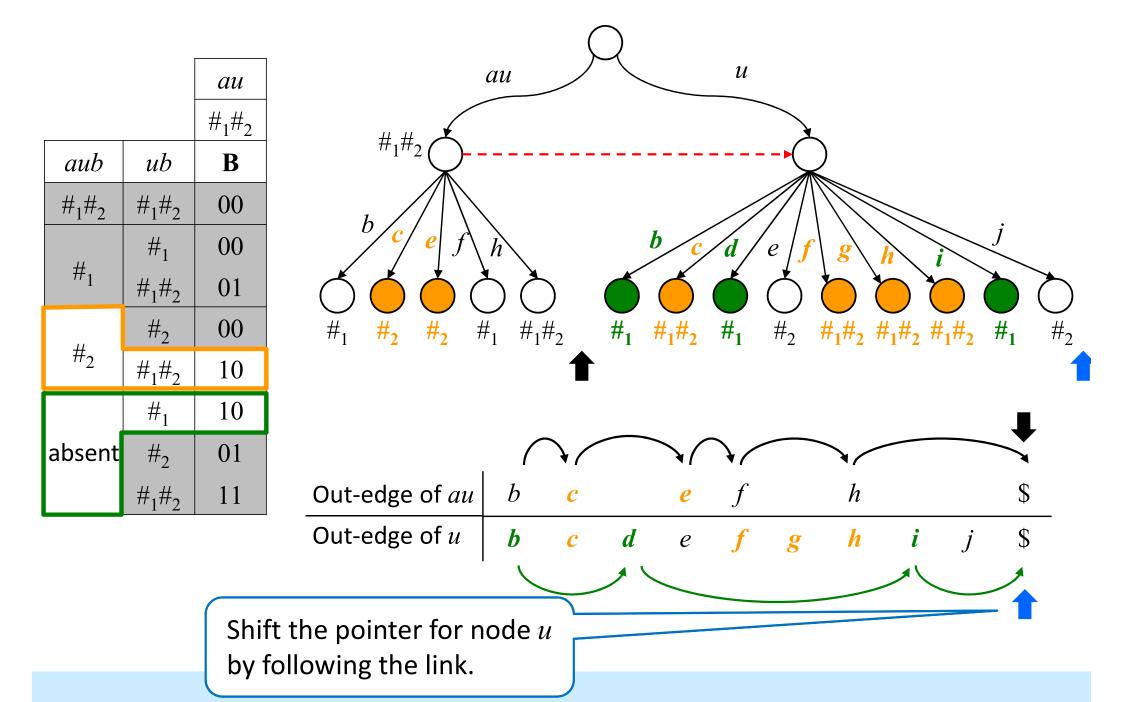












Time Analysis

Out-edge of aubcefhi\$Out-edge of ubcdefghij\$

Charged to the out-edges of node $au \rightarrow O(n)$ in total Charged to output MAWs $\rightarrow O(|MAW(01)|)$ in total Charged to output MAWs $\rightarrow O(|MAW(01)|)$ in total Skipped comparisons \rightarrow Free

Theorem 1

For k = 2, we can solve Problem 1 in optimal O(n + |MAW(B)|) time with O(n) working space.

Final Remarks

- Beal et al. (2003) considered a different version of MAWs for a set $\mathbf{S} = \{S_1, ..., S_k\}$ of k strings, where *aub* is a MAW for \mathbf{S} iff *aub* does not occur in \mathbf{S} , and both *au* and *ub* occur in \mathbf{S} . They presented an $O(\sigma n)$ -time algorithm.
- This version of MAWs can be computed in O(n + |output|) time independently of k, by running our algorithm without skip links.
- Beal & Crochemore (2023) considered T-specific strings w.r.t. S, for string sets T and S: a string w is a T-specific string w.r.t. S iff w is a substring of T and w is a MAW for S. They presented an O(σn)-time algorithm.
- The **T**-specific strings w.r.t. **S** can be computed in O(n + |output|) time by slightly modifying our algorithm for k = 2.