SPIRE 2023

Generalized minimal absent words of multiple strings

Kouta Okabe ${ }^{1}$, Takuya Mieno ${ }^{2}$, Yuto Nakashima ${ }^{1}$, Shunsuke Inenaga ${ }^{1}$, Hideo Bannai ${ }^{3}$
${ }^{1}$ Kyushu University
${ }^{2}$ University of Electro-Communications
${ }^{3}$ Tokyo Medical and Dental University

Minimal Absent Words (MAWs) [1/2]

- A string w over an alphabet Σ is called a Minimal Absent Word (MAW) for a string S, if:

1. w is a character from Σ not occurring in S, or
2. $w=a u b\left(a, b \in \Sigma, u \in \Sigma^{*}\right)$ does not occur in S, but both $a u$ and $u b$ occur in S.

Example

$$
\begin{aligned}
& w=\mathrm{b} \text { a } \mathrm{b} \\
& S=\mathrm{a} \mathrm{~b} \quad \mathrm{a} \text { a } \mathrm{b}
\end{aligned}
$$

Minimal Absent Words (MAWs) [1/2]

- A string w over an alphabet Σ is called a Minimal Absent Word (MAW) for a string S, if:

1. w is a character from Σ not occurring in S, or
2. $w=a u b\left(a, b \in \Sigma, u \in \Sigma^{*}\right)$ does not occur in S, but both $a u$ and $u b$ occur in S.

Example

$$
\begin{aligned}
& w=\mathrm{b} a \mathrm{a} \\
& S=\mathrm{a} \quad \mathrm{~b} \quad \mathrm{a} a \mathrm{~b}
\end{aligned}
$$

Minimal Absent Words (MAWs) [2/2]

- MAW (S) denotes the set of MAWs for a string S.

Example

$$
\begin{aligned}
S & =\mathrm{a} \mathrm{~b} \mathrm{a} a \mathrm{~b} \quad \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
\operatorname{MAW}(S) & =\{\mathrm{a} a \mathrm{a}, \mathrm{a} \mathrm{a} \cdot \mathrm{a}, \mathrm{bab}, \mathrm{~b}, \mathrm{c}, \mathrm{c}\}
\end{aligned}
$$

- The number $|\operatorname{MAW}(S)|$ of MAWs for a string S of length n over an alphabet of size σ is $\mathrm{O}(\sigma n)$, and there is a matching lower bound [Crochemore et al. 1998].

Symmetric Difference of MAWs of Two Strings

- A string similarity measure based on the symmetric difference $\operatorname{MAW}\left(S_{1}\right) \triangle \operatorname{MAW}\left(S_{2}\right)$ of MAWs for two input strings S_{1} and S_{2} has been proposed [Chairungsee \& Crochemore, 2012].
- Enumeration: $\operatorname{MAW}\left(S_{1}\right) \triangle \operatorname{MAW}\left(S_{2}\right)$ can be computed in $\underline{O}(\sigma n)$ time and space [Charalampopoulos et al., 2018].
- Counting: The cardinality $\left|\operatorname{MAW}\left(S_{1}\right) \triangle \operatorname{MAW}\left(S_{2}\right)\right|$ can be computed in $\underline{\mathrm{O}(n) \text { time for integer alphabets }}$
[Charalampopoulos, Crochemore, Pissis, 2018].

Our Starting Point

Can we compute all elements of $\operatorname{MAW}\left(S_{1}\right) \triangle \operatorname{MAW}\left(S_{2}\right)$ in optimal $\mathrm{O}\left(n+\left|\operatorname{MAW}\left(S_{1}\right) \Delta \operatorname{MAW}\left(S_{2}\right)\right|\right)$ time?

Our Problem

- We extend the notion of MAWs to $k \geq 2$ strings as follows:

Problem 1

Input: Set $\mathbf{S}=\left\{S_{1}, \ldots, S_{k}\right\}$ of k strings of total length n and a bit vector \mathbf{B} of length k.
Output: $\operatorname{MAW}(\mathbf{B})=\left\{w \mid w\right.$ is a MAW for string S_{i} iff $\left.\mathbf{B}[i]=1\right\}$.
When $k=2$

Our Problem

When $k=2$

Example

$$
\begin{array}{ll}
S_{1}=\text { abaab } \\
S_{2}=\text { a acbba }
\end{array} \quad \Sigma=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}\}
$$

$\operatorname{MAW}(10)=\{a \mathrm{aba}, \mathrm{bab}, \mathrm{b} \cdot, \mathrm{c}\}$
$\operatorname{MAW}(11)=\{a a a, d\}$
$\operatorname{MAW}(01)=\{a b, b a a, b a c, b b b, b c, c a, c b a, c c\}$

Our Contributions

Problem 1
Input: Set $\mathbf{S}=\left\{S_{1}, \ldots, S_{k}\right\}$ of k strings of total length n and a bit vector \mathbf{B} of length k.
Output: $\operatorname{MAW}(\mathbf{B})=\left\{w \mid w\right.$ is a MAW for string S_{i} iff $\left.\mathbf{B}[i]=1\right\}$.

Theorem 1

For $k=2$, we can solve Problem 1 in optimal $\mathrm{O}(n+|\operatorname{MAW}(\mathbf{B})|)$ time with $\mathrm{O}(n)$ working space.

Theorem 2
For general $k>2$, we can solve Problem 1 in $\mathrm{O}\left(n\left\lceil\frac{k}{\log n}\right\rceil+|\mathrm{MAW}(\mathbf{B})|\right)$ time with $\mathrm{O}(n)$ working space.

Computing MAWs with DAWG [1/2]

- Previous algorithms [Crochemore et al. 1998, Fujishige et al. 2016] for computing MAWs for a single string S use DAWG (Directed Acyclic Word Graph) for S, which is an $\mathrm{O}(n)$-size automaton representing all substrings of S.

$$
\text { E.g. } S=\mathrm{a} \mathrm{babcb}
$$

Substrings are represented by the same node of DAWG (S) iff they have the same ending position(s) in S.

Computing MAWs with DAWG [1/2]

- Previous algorithms [Crochemore et al. 1998, Fujishige et al. 2016] for computing MAWs for a single string S use DAWG (Directed Acyclic Word Graph) for S, which is an $\mathrm{O}(n)$-size automaton representing all substrings of S.

Substrings are represented by the same node of DAWG (S) iff they have the same ending position(s) in S.
---- suffix link

Computing MAWs with DAWG [1/2]

- If the edges of DAWG are sorted, then one can compute $\operatorname{MAW}(S)$ in $\mathrm{O}(n+|\operatorname{MAW}(S)|)$ time [Fujishige et al. 2016].

DAWG for string S

- Consider each pair of nodes $a u$ and u which are connected by a suffix link, where a is a character and u is a string.
- Compare the labels of the out-edges of nodes $a u$ and u in sorted order.
- For b : $a u$ has no out-edge with b, but u has an out-edge with b.
$\rightarrow a u b$ is a MAW for the input string S.
- For c : both $a u$ and u have out-edges with c \rightarrow auc is not a MAW for the input string S, but this cost of character comparisons can be charged to this out-edge of $a u$ labeled c.

Building DAWG for Multiple Strings

- The best known algorithm for building the DAWG for multiple strings takes $\mathrm{O}(n \log \sigma)$ time [Blumer et al. 1985].

Lemma 1

The DAWG for a set $\mathbf{S}=\left\{S_{1} \#_{1}, \ldots, S_{k} \#_{k}\right\}$ of k strings of total length n can be built in $\mathrm{O}(n)$ time for integer alphabets.

1. We build the DAWG for the concatenated string $T=S_{1} \#_{1} \cdots S_{k} \#_{k}$ in O(n) time by the DAWG-construction algorithm of Fujishige et al. (2016) for a single string.
2. We convert the DAWG for T to the DAWG for \mathbf{S} in $\mathrm{O}(n)$ time.

Building DAWG for Multiple Strings [2/2]

$$
T=\mathbf{a b c}_{1} \mathbf{b b a c}_{2} \mathbf{a b c a}_{3}
$$

Building DAWG for Multiple Strings [2/2]

$$
T=\mathbf{a b c} \#_{1} \mathbf{b b a c}_{2} \mathrm{abca}_{3}
$$

Building DAWG for Multiple Strings [2/2]

$T=$ abc\# $_{1}$ bbac\# $_{2}$ abca $_{3}$

Building DAWG for Multiple Strings [2/2]

$T=$ abc\# $_{1}$ bbac\# $_{2}$ abca $_{3}$

We remove the paths that lead to $\#_{2}$ but contain $\#_{1}$ inside. It can be done by deleting this chain of unary nodes from the "spine".

Building DAWG for Multiple Strings [2/2]

$T=$ abc\# $_{1}$ bbac\# $_{2}$ abca $_{3}$

DAWG for $\left\{\mathrm{abc} \#_{1}, \mathrm{bbac}_{2}\right.$, abca $\left._{3}\right\}$

Computing MAWs for $k=2$

DAWG for two strings $S_{1} \#_{1}$ and $S_{2} \#_{2}$

All possible combinations of node labels				
		$\#_{1} \#_{2}$	$\#_{1}$	$\#_{2}$
$a u b$	$u b$	B		
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00	-	-
\# ${ }_{1}$	$\begin{gathered} \#_{1} \\ \#_{1} \#_{2} \\ \hline \end{gathered}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	-
\# 2	$\begin{gathered} \#_{2} \\ \#_{1} \#_{2} \end{gathered}$	$\begin{aligned} & 00 \\ & 10 \end{aligned}$	-	00 00
absent	$\begin{gathered} \#_{1} \\ \#_{2} \\ \#_{1} \#_{2} \end{gathered}$	$\begin{aligned} & 10 \\ & 01 \\ & 11 \end{aligned}$	10 00 10	00 01 01

Case where $\mathbf{B}=10$

DAWG for two strings $S_{1} \#_{1}$ and $S_{2} \#_{2}$

Node $a u$ is la $a u$ is a substr and so on. All possible combinations of node labels		$a u$		
		$\#_{1} \#_{2}$	$\#_{1}$	$\#_{2}$
aub	$u b$	B		
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00	-	-
$\# 1$	$\begin{gathered} \#_{1} \\ \#_{1} \#_{2} \end{gathered}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	
\#	\# 2	00	-	00
	$\#_{1} \#_{2}$	10	-	00
absent	\#	10	10	00
	\#	01	00	01
	$\#_{1} \#_{2}$	11	10	01

Case where B=10 and $a u$ is labeled $\#_{1} \#_{2}$

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Out-edge of $a u$	b	c		e	f		h		
Out-edge of u	b	c	d	e	f	g	h	i	j

Sorted List of out-edges of nodes $a u$ and u.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

		$a u$	
	$\#_{1} \#_{2}$		
$a u b$	$u b$	\mathbf{B}	
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00	
$\#_{1}$	$\#_{1}$	00	
	$\#_{1} \#_{2}$	01	
	$\#_{2}$	00	
$\#_{2}$	$\#_{1} \#_{2}$	10	
	$\#_{1}$	10	
absent	$\#_{2}$	01	
	$\#_{1} \#_{2}$	11	

Compare the out-edge characters of $a u$ and u by following these links.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Shift the pointer for node $a u$ by following the link.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Both $a u$ and u have out-edge with c with the condition for orange case
$\rightarrow a u c$ is a MAW to output.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

		$a u$
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Shift the pointer for node $a u$ by following the link.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Shift the pointer for node u by following the link.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

		$a u$
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Shift the pointer for node $a u$ by following the link.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

$\left.\begin{array}{l|llllllll} & b & c & & e & f & & h & \\ \text { Out-edge of } a u & b & c & & & \\ \hline \text { Out-edge of } u & b & c & d & e & f & g & h & i\end{array}\right]$

The out-edge of $a u$ with f does not meet the condition for orange case
\rightarrow auf is not a MAW to output.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Shift the pointer for node $a u$ by following the link.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$\#_{1}$	10
	absent	$\#_{2}$
	$\#_{1} \#_{2}$	01
		11

The out-edge of $a u$ with h does not meet the condition for orange case
\rightarrow auh is not a MAW to output.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Shift the pointer for node au by following the link.

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

		$a u$	
		$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}	
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00	
$\#_{1}$	$\#_{1}$	00	
	01		
	$\#_{2}$	00	
$\#_{2}$	$\#_{1} \#_{2}$	10	
	$\#_{1}$	10	
absent	$\#_{2}$	01	
	$\#_{1} \#_{2}$	11	

Algorithm for $\mathbf{B}=10$ and $a u$ is labeled $\#_{1} \#_{2}$

	$a u$	
	$\#_{1} \#_{2}$	
$a u b$	$u b$	\mathbf{B}
$\#_{1} \#_{2}$	$\#_{1} \#_{2}$	00
	$\#_{1}$	00
	$\#_{1} \#_{2}$	01
	$\#_{2}$	00
$\#_{2}$	$\#_{1} \#_{2}$	10
	$\#_{1}$	10
absent	$\#_{2}$	01
	$\#_{1} \#_{2}$	11

Shift the pointer for node u by following the link.

Time Analysis

Charged to the out-edges of node $a u \rightarrow \mathrm{O}(n)$ in total
Charged to output MAWs $\rightarrow \mathrm{O}(|\operatorname{MAW}(01)|)$ in total
Charged to output MAWs $\rightarrow \mathrm{O}(|\operatorname{MAW}(01)|)$ in total
Skipped comparisons \rightarrow Free

Theorem 1

For $k=2$, we can solve Problem 1 in optimal $\mathrm{O}(n+|\operatorname{MAW}(\mathbf{B})|)$ time with $\mathrm{O}(n)$ working space.

Final Remarks

- Beal et al. (2003) considered a different version of MAWs for a set $\mathbf{S}=\left\{S_{1}, \ldots, S_{k}\right\}$ of k strings, where aub is a MAW for \mathbf{S} iff $a u b$ does not occur in \mathbf{S}, and both $a u$ and $u b$ occur in \mathbf{S}. They presented an $\mathrm{O}(\sigma n)$-time algorithm.
- This version of MAWs can be computed in $\mathrm{O}(n+$ output $\mid)$ time independently of k, by running our algorithm without skip links.
- Beal \& Crochemore (2023) considered T-specific strings w.r.t. S, for string sets \mathbf{T} and \mathbf{S} : a string w is a \mathbf{T}-specific string w.r.t. \mathbf{S} iff w is a substring of \mathbf{T} and w is a MAW for \mathbf{S}.
They presented an $\mathrm{O}(\sigma n)$-time algorithm.
- The T-specific strings w.r.t. \mathbf{S} can be computed in $\mathrm{O}(n+\mid$ output $\mid)$ time by slightly modifying our algorithm for $k=2$.

