
Generalized minimal absent words
of multiple strings
Kouta Okabe1, Takuya Mieno2, Yuto Nakashima1,
Shunsuke Inenaga1, Hideo Bannai3

1 Kyushu University
2 University of Electro-Communications
3 Tokyo Medical and Dental University

SPIRE 2023

Minimal Absent Words (MAWs) [1/2]

 A string w over an alphabet S is called
a Minimal Absent Word (MAW) for a string S, if:
1. w is a character from S not occurring in S, or
2. w = aub (a, b S, u S*) does not occur in S,

but both au and ub occur in S.

S = a b a a b

w = b a b

Example

Minimal Absent Words (MAWs) [1/2]

S = a b a a b

w = b a b

Example

bab is a MAW for abaab

 A string w over an alphabet S is called
a Minimal Absent Word (MAW) for a string S, if:
1. w is a character from S not occurring in S, or
2. w = aub (a, b S, u S*) does not occur in S,

but both au and ub occur in S.

Minimal Absent Words (MAWs) [2/2]

 MAW(S) denotes the set of MAWs for a string S.

S = abaab

Example

MAW(S) = {aaa, aaba , bab, bb, c}

S = {a, b, c}

 The number |MAW(S)| of MAWs for a string S of length
n over an alphabet of size s is O(sn), and there is a
matching lower bound [Crochemore et al. 1998].

Symmetric Difference of MAWs of Two Strings
 A string similarity measure based on

the symmetric difference MAW(S1) MAW(S2) of MAWs
for two input strings S1 and S2 has been proposed
[Chairungsee & Crochemore, 2012].

 Enumeration: MAW(S1) MAW(S2) can be computed
in O(sn) time and space [Charalampopoulos et al., 2018].

 Counting: The cardinality |MAW(S1) MAW(S2)| can be
computed in O(n) time for integer alphabets
[Charalampopoulos, Crochemore, Pissis, 2018].

Can we compute all elements of MAW(S1) MAW(S2)
in optimal O(n + |MAW(S1) MAW(S2)|) time?

Our Starting Point

Our Problem
 We extend the notion of MAWs to k 2 strings as follows:

When k = 2

S* 00

10 01

MAW(S1) MAW(S2) MAW(S1) MAW(S2)
is obtained by computing
MAW(10) and MAW(01).

Input: Set S = {S1, …, Sk} of k strings of total length n
and a bit vector B of length k.

Output: MAW(B) = {w | w is a MAW for string Si iff B[i] = 1}.

Problem 1

11

Our Problem
When k = 2

S1 = abaab
S = {a, b, c, d}

Example

S2 = aacbba

MAW(10) = {aaba, bab, bb, c}

S* 00

10 01

MAW(S1) MAW(S2)

11

MAW(01) = {ab, baa, bac, bbb, bc, ca, cba, cc}

MAW(11) = {aaa, d}

Our Contributions

Input: Set S = {S1, …, Sk} of k strings of total length n
and a bit vector B of length k.

Output: MAW(B) = {w | w is a MAW for string Si iff B[i] = 1}.

Problem 1

For k = 2, we can solve Problem 1
in optimal O(n + |MAW(B)|) time with O(n) working space.

Theorem 1

For general k > 2, we can solve Problem 1

in O + |MAW(B)| time with O(n) working space.

Theorem 2

Computing MAWs with DAWG [1/2]
 Previous algorithms [Crochemore et al. 1998, Fujishige et

al. 2016] for computing MAWs for a single string S use
DAWG (Directed Acyclic Word Graph) for S, which is an
O(n)-size automaton representing all substrings of S.

E.g. S = ababcb

c

a b a b c b

b

c

a
c

Substrings are represented
by the same node of DAWG(S)
iff they have the same ending
position(s) in S.

Computing MAWs with DAWG [1/2]
 Previous algorithms [Crochemore et al. 1998, Fujishige et

al. 2016] for computing MAWs for a single string S use
DAWG (Directed Acyclic Word Graph) for S, which is an
O(n)-size automaton representing all substrings of S.

E.g. S = ababcb

c

a b a b c b

b

c

a
c

abab
bab

Substrings are represented
by the same node of DAWG(S)
iff they have the same ending
position(s) in S.

ab

suffix link

Computing MAWs with DAWG [1/2]
 If the edges of DAWG are sorted, then one can compute
MAW(S) in O(n + |MAW(S)|) time [Fujishige et al. 2016].

au u

c b c

 Consider each pair of nodes au and u which
are connected by a suffix link, where a is a
character and u is a string.

 Compare the labels of the out-edges of
nodes au and u in sorted order.
 For b: au has no out-edge with b,

but u has an out-edge with b.
 aub is a MAW for the input string S.

 For c: both au and u have out-edges with c
 auc is not a MAW for the input string S,
but this cost of character comparisons can
be charged to this out-edge of au labeled c.

DAWG for string S

Building DAWG for Multiple Strings

 The best known algorithm for building the DAWG for
multiple strings takes O(n log s) time [Blumer et al. 1985].

The DAWG for a set S = {S1#1, …, Sk#k} of k strings of
total length n can be built in O(n) time for integer alphabets.

Lemma 1

1. We build the DAWG for the concatenated string
T = S1#1 Sk#k in O(n) time by the DAWG-construction
algorithm of Fujishige et al. (2016) for a single string.

2. We convert the DAWG for T to the DAWG for S in O(n) time.

T = abc#1 bbac#2 abca#3

Building DAWG for Multiple Strings [2/2]

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

#3

#3

c
#1

#3

#2
b

a

b

a

a

c

We first build the DAWG for
the concatenated string T.

T = abc#1 bbac#2 abca#3

Building DAWG for Multiple Strings [2/2]

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

b

a

a

c

We remove the paths that lead to #3
but contain #1 and/or #2 inside.
It can be done by deleting this chain
of unary nodes from the “spine”.

T = abc#1 bbac#2 abca#3

Building DAWG for Multiple Strings [2/2]

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

b

a

a

c

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

T = abc#1 bbac#2 abca#3

Building DAWG for Multiple Strings [2/2]

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

b

a

a

c

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

We remove the paths that
lead to #2 but contain #1
inside.
It can be done by deleting
this chain of unary nodes
from the “spine”.

T = abc#1 bbac#2 abca#3

Building DAWG for Multiple Strings [2/2]

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

a

b

c

#1

c

b

#1

#2 #3

c

b

b

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

b

a

a

c

a

b

c

#1

c

b

#1

#2 #3

c

a

c

#2

#3

a

#3

c
#1

a

#2
b

a

DAWG for
{abc#1, bbac#2, abca#3}

Computing MAWs for k = 2

au u

b b

DAWG for two strings S1#1 and S2#2

Node au is labeled #1#2 iff
au is a substring of S1 and S2,
and so on.

All possible
combinations
of node labels

au

#1#2 #1 #2

aub ub B

#1#2 #1#2 00 - -

#1

#1 00 00 -

#1#2 01 00 -

#2

#2 00 - 00

#1#2 10 - 00

#1 10 10 00
absent #2 01 00 01

#1#2 11 10 01

Case where B = 10

au u

b b

All possible
combinations
of node labels

au

#1#2 #1 #2

aub ub B

#1#2 #1#2 00 - -

#1

#1 00 00 -

#1#2 01 00 -

#2

#2 00 - 00

#1#2 10 - 00

#1 10 10 00
absent #2 01 00 01

#1#2 11 10 01

Node au is labeled #1#2 iff
au is a substring of S1 and S2,
and so on.

DAWG for two strings S1#1 and S2#2

Case where B = 10 and au is labeled #1#2
au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

au u

b b

au u

b

#1#2

#2 #1#2

#1

#1#2

• au is a substring of S1 and S2

• aub is not a substring of S1

• aub is a substring of S2

• ub is a substring of S1 and S2

 aub MAW(10)

• au is a substring of S1 and S2

• aub is not a substring of S1

• aub is not a substring of S2

• ub is a substring of S1

• ub is not a substring of S2

 aub MAW(10)

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

Here we highlight the out-edges of nodes au and u
which meet necessary conditions for the
orange/green cases shown in the table.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Sorted List of out-edges of nodes au and u.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Link of the out-edges of node u
that are labeled #1.

Out-edge of au

Out-edge of u

Link of all out-edges of au.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Compare the out-edge characters
of au and u by following these links.

Out-edge of au

Out-edge of u

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

aub must be absent for green case
 aub is not a MAW to output.

Out-edge of au

Out-edge of u

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Shift the pointer for node u
by following the link.

Out-edge of au

Out-edge of u

Out-edge of au

Out-edge of u

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Shift the pointer for node au
by following the link.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Both au and u have out-edge with c
with the condition for orange case
 auc is a MAW to output.

Out-edge of au

Out-edge of u

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Shift the pointer for node au
by following the link.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

aud is absent and u has out-edge
with d with condition for green case
 aud is a MAW to output.

Out-edge of au

Out-edge of u

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Shift the pointer for node u
by following the link.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

The out-edge of u with e does not
meet the condition for orange case
 aue is not a MAW to output.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Shift the pointer for node au
by following the link.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

The out-edge of au with f does not
meet the condition for orange case
 auf is not a MAW to output.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Shift the pointer for node au
by following the link.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Our skip links allow us
not to consider this label g.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

The out-edge of au with h does not
meet the condition for orange case
 auh is not a MAW to output.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Shift the pointer for node au
by following the link.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

aui is absent and u has out-edge
with i with condition for green case
 aui is a MAW to output.

Algorithm for B = 10 and au is labeled #1#2

au

#1#2

aub ub B

#1#2 #1#2 00

#1

#1 00

#1#2 01

#2

#2 00

#1#2 10

#1 10

absent #2 01

#1#2 11

b

#1

au u

#2

b

#1#2

c

#2 #1

c d

#2

e

#1

e

#1#2

ff

#1#2 #1#2

gh h

#1

i
j

#1#1#2 #2

#1#2

b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Shift the pointer for node u
by following the link.

Time Analysis
b c e f h $

b c d e f g h i j $

Out-edge of au

Out-edge of u

Charged to the out-edges of node au O(n) in total

Charged to output MAWs O(|MAW(01)|) in total

Charged to output MAWs O(|MAW(01)|) in total

Skipped comparisons Free

For k = 2, we can solve Problem 1
in optimal O(n + |MAW(B)|) time with O(n) working space.

Theorem 1

Final Remarks
 Beal et al. (2003) considered a different version of MAWs for

a set S = {S1, …, Sk} of k strings, where aub is a MAW for S
iff aub does not occur in S, and both au and ub occur in S.
They presented an O(sn)-time algorithm.

 This version of MAWs can be computed in O(n + |output|) time
independently of k, by running our algorithm without skip links.

 Beal & Crochemore (2023) considered T-specific strings w.r.t. S,
for string sets T and S: a string w is a T-specific string w.r.t. S
iff w is a substring of T and w is a MAW for S.
They presented an O(sn)-time algorithm.

 The T-specific strings w.r.t. S can be computed in O(n + |output|)
time by slightly modifying our algorithm for k = 2.

