Compacting a Dynamic Edit Distance Table by RLE Compression

Heikki Hyyrö (University of Tampere, Finland)
Shunsuke Inenaga (Kyushu University, Japan)
Kyushu University, Japan
Kyushu University, Japan
Kyushu University, Japan

Itoshima Peninsula

Kyushu U.

糸島

String Island
String Comparison

Problem 1 (Edit Distance)

Input: two strings A and B
Output: the edit distance $ed(A, B)$ between A and B

- $ed(A, B)$ is the minimum number of edit operations (insertion, deletion, substitution of a single character) which transforms A to B (or vice versa).
Dynamic Programming (DP)

- Let $m = |A|$ & $n = |B|$. Let D be a table of size $(m+1) \times (n+1)$ s.t. $D[i, j] = ed(A[1..i], B[1..j])$.
- The fundamental way to compute $D[m, n] = ed(A, B)$ is DP with the following recurrence:
 - $D[i, 0] = i$ for $1 \leq i \leq m$,
 - $D[0, j] = j$ for $1 \leq j \leq n$,
 - $D[i, j] = \min\{ D[i, j-1]+1, D[i-1, j]+1,
 D[i-1, j-1] + \delta(A[i], B[j]) \}$,

Dynamic Programming (DP)

\[
D[0, 0] = 0 \\
D[i, 0] = i \text{ for } 1 \leq i \leq m \\
D[0, j] = j \text{ for } 1 \leq j \leq n
\]

\[
A = \text{tgcatat} \\
B = \text{atccgat}
\]
Dynamic Programming (DP)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>c</th>
<th>g</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A = \text{tgcatat}$

$B = \text{atccgat}$

$D[i, j] = \min\{ D[i, j-1]+1, D[i-1, j]+1, D[i-1, j-1] +1 \}$
Dynamic Programming (DP)

\[
D[i, j] = \min \{D[i, j-1]+1, \ D[i-1, j]+1, \ D[i-1, j-1] +1\}
\]

\[
A = \text{tgcatat} \\
B = \text{atccgat}
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>e</th>
<th>g</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>g</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>t</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
Dynamic Programming (DP)

\[D[\begin{array}{cccccc}
A & t & g & c & a & t \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
t & 1 & 1 & 1 & 2 & 3 & 4 & 5 & 6 \\
g & 2 & 2 & 2 & 2 & 3 & 3 & 4 & 5 \\
c & 3 & 3 & 3 & 2 & 2 & 3 & 4 & 5 \\
a & 4 & 3 & 4 & 3 & 3 & 3 & 3 & 4 \\
t & 5 & 4 & 3 & 4 & 4 & 4 & 4 & 3 \\
a & 6 & 5 & 4 & 4 & 5 & 5 & 4 & 4 \\
t & 7 & 6 & 5 & 5 & 6 & 6 & 5 & 5
\end{array}] \]

\[A = \text{tgcatat} \quad B = \text{atccgat} \]

\[D[i, j] = \min \{ D[i, j-1]+1, \quad D[i-1, j]+1, \quad D[i-1, j-1] \} \]
Dynamic Programming (DP)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>t</th>
<th>c</th>
<th>c</th>
<th>g</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>g</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>t</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
D[i, j] = \min\{ D[i, j-1]+1, \\
D[i-1, j]+1, \\
D[i-1, j-1] \}
\]

\[
O(mn) \text{ total time}
\]

\[
A = \text{tgcatat} \\
B = \text{atccgat}
\]
Cyclic Rotation of String

- For $1 \leq j \leq n$, let $B_j = B[j..n]B[1..j-1]$, i.e., B_j is the j-th cyclic rotation of B.

- E.g.) If $B = \text{SOFSEM}$, then
 - $B_1 = \text{SOFSEM}$
 - $B_2 = \text{OFSEMS}$
 - $B_3 = \text{FSEMSO}$
 - $B_4 = \text{SEMSOF}$
 - $B_5 = \text{EMSOFS}$
 - $B_6 = \text{MSOFSE}$
Cyclic String Comparison

Problem 2 (Cyclic Edit Distance)

Input: two strings A and B
Output: the edit distance $ed(A, B_j)$ for A and all rotations B_1, \ldots, B_n of B.

- Motivation in bioinformatics (some biological sequences are circular).
- Naïve approach takes $O(mn)$ time for each rotation B_j. So, overall it takes $O(mn^2)$ time.
- Any better solution?
Right Increment Is Easy

New values are only at the last column. \[\Rightarrow\] Right increment takes \(O(m) \) time.
Left Decrement Is NOT as Easy

- When the left-most character is deleted, different values can propagate to all columns!
There are several known solutions for the left-decrement edit distance problem. Each solution uses some “indirect” representation of the DP table which requires $O(mn)$ space. This space consumption is a bottle neck.
Run Length Encoding (RLE)

- The RLE of a string A is a compressed representation of A where each maximal “run” $a...a$ of the same character is encoded by a^p, where p is the length of the run.
 - E.g.) $\text{RLE}(aaabbbccccccbb) = a^3b^2c^5b^2$

- The size k of $\text{RLE}(A)$ is the number of maximal runs in A.

- If m is the length of the original string A, then clearly $k \leq m$ holds.
Let DR be a differential representation of DP table D for $ed(A, B)$ such that:

- $DR[i, j].U = D[i, j] - D[i - 1, j]$ (vertical diff.)
- $DR[i, j].L = D[i, j] - D[i, j - 1]$ (horizontal diff.)

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>g</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>g</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>t</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>g</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>g</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>t</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
Property of DR Tables

- Let DR and DR' denote the DR tables for $ed(A, B)$ and $ed(A, B[2..n])$, respectively.

Theorem 1 [Hyyrö et al. 2015]

For each row i of DR', there are only $O(1)$ column indices j s.t. $DR'[i, j].L \neq DR[i, j].L$.

For each column j of DR', there are only $O(1)$ row indices i s.t. $DR'[i, j].U \neq DR[i, j].U$.
Edit Distance of RLE strings

- The DP and DR tables of \(ed(RLE(A), RLE(B)) \) can be divided into \(kl \) blocks [Arbel et al. 2002].

```
+---+---+---+---+---+---+---+
| a | a | a | a | b | b | b | b |
+---+---+---+---+---+---+---+
| b |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+
| b |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+
| b |   |   |   |   |   |   |   |
+---+---+---+---+---+---+---+
| c | c | c | c |   |   |   |   |
+---+---+---+---+---+---+---+
| c | c | c |   |   |   |   |   |
+---+---+---+---+---+---+---+
| c | c |   |   |   |   |   |   |
+---+---+---+---+---+---+---+
```

Mismatching Blocks

Matching Blocks
Edit Distance of RLE strings

- We explicitly store only the block boundaries of the DR tables, using $O(ml + nk)$ space.
- Then, the values inside the blocks can be computed on the fly.

| a | a | a | a | b | b | b | b | b | c | c | c | c |
|---|---|---|---|---|---|---|---|---|---|---|---|
| b | | | | | | | | | | | | |
| b | | | | | | | | | | | | |
| b | | | | | | | | | | | | |
| c | | | | | | | | | | | | |
| c | | | | | | | | | | | | |
| c | | | | | | | | | | | | |
| c | | | | | | | | | | | | |

Total number of cells in block boundaries are $O(ml + nk)$.
Key Lemma

Lemma 1

Each of the top, bottom, left, and right boundaries of a block of DR contains only $O(1)$ cells (i, j) such that $DR'[i, j] \neq DR[i, j]$.

Proof.

- By Theorem 1.

Black cells are those where $DR'[i, j] \neq DR[i, j]$.
Processing Matching Blocks

- In a matching block, the values in the DP tables D' and D propagate diagonally.
- Thus, the different values of DR propagate only diagonally, from left/top boundaries to bottom/right boundaries.
Lemma 2

After the left-most character of \(B \) is deleted, all matching blocks of the DR table can be updated in a total of \(O(m + n) \) time, using \(O(ml + nk) \) space.

Proof.

- Moving one step forward in a diagonal path takes \(O(1) \) time.
- The total length of diagonal paths in all matching blocks is \(O(m + n) \).
Processing Mismatching Blocks

- In a mismatching block, the different values of DR' may diverge.
- From each of the $O(1)$ sources in the left/top boundaries, we trace all paths by DFS.

Some path may not reach the right or bottom boundary.
Proof.

- We can traverse all the paths of DFS in time linear in the total length of the paths. (Details are omitted.)
Lemma 3

After the left-most character of B is deleted, all mismatching blocks of the DR table can be updated in a total of $O(m + n)$ time, using $O(ml + nk)$ space.

Proof. (Cont.)

- The total length of the paths is linear in the number of cells where $DR'[i, j] \neq DR[i, j]$.
- It follows from Theorem 1 that there are only $O(m + n)$ such cells in total.
Theorem 2 (Main result)

Given an $O(ml + nk)$-space representation of the DR table for $ed(A, B)$, we can update it to that for $ed(A, B[2..n])$ in $O(m + n)$ time.

- $m = |A|$
- $n = |B|$
- $k = |RLE(A)|$
- $l = |RLE(B)|$
Conclusions and Future Work

- We proposed the first space-efficient left-decremental edit distance algorithm, which is based on RLE.

- Our algorithm can also be applied to the left-incremental case.

- Open questions: Can we extend our algorithm to:
 - Weighted edit distance?
 - Insertion and deletion at arbitrary positions?