
Suffix Trees, DAWGs and CDAWGs
for Forward and Backward Tries

Shunsuke Inenaga
Kyushu University, Japan

LATIN 2020

Labeled Trees
 A string is a sequence of characters, which is equivalent

to a single path where each edge is labeled.
 A labeled tree is a generalization of a string which has

branches, and it can also be seen as a compact
representation of a set of strings.

c b ba c

b

b

c b b ca
a

cabbc

single path

labeled tree
cabab
cabbc
cabbb

string

set of strings

equivalent

generalized

compacted

Labeled Tree Indexing Problem
 We deal with the indexing version of the pattern

matching problem on labeled trees (a.k.a. tries).

Preprocess input: A trie T.
Query input: A pattern string P.
Query output: Every sub-path of T that matches P.

Problem

 We consider two version of tries:
Forward Tries: paths are read from root to leaves.
Backward Tries: paths are read from leaves to root.

Indexing Forward/Backward Tries

b

c b b ca
a

b

Forward Trie T

b

Backward Trie T R

cbbc a
a

b

Pattern P = ab Pattern P R = ba

root root

DAWG(T)
bab

c a
b b bcb

b
c
b

a ab

c

a

Partial DFA that accepts
all substrings of T . DAWG(T R)

b
a

a c

b a cb
a

a cb
cc b b

a

Partial DFA that accepts
all substrings of T R .

leaves leaves

Indexing Forward Tries

DAWG(T)
b ba

c a
b b bcb

b
c
b

a ab

c

a

CDAWG(T)

b
ba

c ab
b bcb

b
c
b

a
a

b

c

a

b

b

SuffixTree(T)

b

ba

c ab
b

c

b
b b

a ab

c

a

b

b

bc

b
c

Three kinds of indexing structures
for Forward Trie T.

Partial DFA that accepts
all substrings of T .

Compact trie representing
all substrings of T .

Compact DAG representing
all substrings of T .

Indexing Backward Tries
Three kinds of indexing structures
for Backward Trie T R .

Partial DFA that accepts
all substrings of T R .

Compact trie representing
all substrings of T R .

Compact DAG representing
all substrings of T R .

CDAWG(T R)

DAWG(T R)

b
a

a c

b a cb
a

a cb
cc b b

a
c

b
a

a c

b
a

a cb
cc

b b

a
a cb

b

SuffixTree(T R)

b
a

ac

b
a

a cb
cc

b b

a
a cb

b

a cb
c

DAWGs (Directed Acyclic Word Graphs)

caba
aba
ba

b

c b b ca
a

Forward Trie T
DAWG(T)

b ba

c a
b b bcb

b
c
b

a ab

c

a

ab

 A substring (i.e. sub-path) X of a forward trie T is said to
be left-maximal if (1) there are two distinct characters a, b
such that both aX and bX are substrings of T, or (2) X has
an occurrence begging at the root of T .

 This generalizes Blumer et al.’s DAWGs for strings to trees.
 DAWGs for backward tries T R are defined similarly.

b

Suffix Trees

abbcb

c b b ca
a

Forward Trie T

cab
ca

 A substring (i.e. sub-path) X of a forward trie T is said to
be right-maximal if (1) there are two distinct characters
a, b such that both Xa and Xb are substrings of T, or
(2) X has an occurrence ending at a leaf of T .

 This generalizes Weiner’s suffix trees for strings to trees.
 Suffix trees for backward tries T R are defined similarly.

SuffixTree(T)

b

ba

c ab
b

c

b
b b

a ab

c

a

b

b

bc

b
c

b

CDAWGs (Compact DAWGs)

b

c b b ca
a

Forward Trie T
CDAWG(T) cabab

cabab
cabab
caba
cabab
cabab

 A substring (i.e. sub-path) X of a forward trie T is said to
be bi-maximal if X is both left-maximal and right-maximal
in T .

 Intuitively, CDAWGs are mixture of DAWGs and Suffix Trees.
 This generalizes Blumer et al.’s CDAWGs for strings to trees.
 CDAWGs for backward tries T R are defined similarly.

b

b
ba

c ab
b bcb

b
c
b

a
a

b

a

b

b

Sizes of Indexing Structures for Tries
Size Bounds of Indexing Structures for Tries (Existing Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG Ο(n) − − −
CDAWG − − − −

Suffix Tree − − Ο(n) Ο(n)
Suffix Array − n−1

n is # of nodes in the input trie.

upper
bounds

Sizes of Indexing Structures for Tries
Size Bounds of Indexing Structures for Tries (This Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Ο(n2) Ο(n2) Ο(n2)
CDAWG 2n−3 Ο(n2) 2n−3 2n−4

Suffix Tree Ο(n2) Ο(n2) 2n−3 2n−4
Suffix Array Ο(n2) n−1

n is # of nodes in the input trie.

upper
bounds

Note: For a string (i.e. path tree) with n characters,
the sizes of these indexing structures are all O(n).

Matching Upper/Lower Bounds
Size Bounds of Indexing Structures for Tries (This Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Ο(n2) Ο(n2) Ο(n2)
CDAWG 2n−3 Ο(n2) 2n−3 2n−4

Suffix Tree Ο(n2) Ο(n2) 2n−3 2n−4
Suffix Array Ο(n2) n−1

upper
bounds

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Ω(n2) Ω(n2) Ω(n2)
CDAWG 2n−3 Ω(n2) 2n−3 2n−4

Suffix Tree Ω(n2) Ω(n2) 2n−3 2n−4
Suffix Array Ω(n2) n−1

lower
bounds

Linear-size Indexing for Forward Tries
Size Bounds of Indexing Structures for Tries (This Work)

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Θ(n2) Θ(n2) Θ(n2)
CDAWG 2n−3 Θ(n2) 2n−3 2n−4

Suffix Tree Θ(n2) Θ(n2) 2n−3 2n−4
Suffix Array Θ(n2) n−1

There exists an Ο(n)-size compact representation of the
DAWG for forward trie T which can be built in O(n) time.
Also, this compact representation supports bidirectional
pattern matching queries on the trie in O(m log σ + occ) time.

n: # nodes in T ，m: pattern length，σ: alphabet size，occ：# pattern occurrences

Theorem [This Work]

upper
bounds

Connections of DAWG(T) and SuffixTree(T R)

a

DAWG(T)
b ba

c
b b bcb

b
c
b

a ab

c

a

SuffixTree(T R)

b
a

ac

b
a

a cb
cc

b b

a
a cb

b

a cb
c

caba
aba
ba

abac
aba
abThere is a one-to-one correspondence between the nodes

of DAWG(T) and the nodes of SuffixTree(T R), but there
is no such correspondence between their edges.

Simulating DAWG(T) edges with SuffixTree(T R)
We can simulate all the O(n2) edges of DAWG(T)
with SuffixTree(T R) using only O(n) space.

Decompose SuffixTree(T R) into
O(n/σ) clusters, O(σ)-size each,
where σ is the alphabet size.

Store carefully-selected DAWG
edges in each cluster,
so that the other DAWG edges
can be retrieved upon query.

Conclusions and Open Question
 We have shown a complete perspective on the size

bounds of classical indexing structures for forward tries
and backward tries.

 We can simulate the DAWG for a forward trie with the
suffix tree for a backward trie, using O(n) space.

 Can we simulate the CDAWG for a forward trie with the
CDAWG for a backward trie, using O(n) space?

Forward Trie T Backward Trie T R

Index. structures # nodes # edges # nodes # edges

DAWG 2n−3 Θ(n2) Θ(n2) Θ(n2)
CDAWG 2n−3 Θ(n2) 2n−3 2n−4

Suffix Tree Θ(n2) Θ(n2) 2n−3 2n−4
Suffix Array Θ(n2) n−1

	Suffix Trees, DAWGs and CDAWGs �for Forward and Backward Tries
	Labeled Trees
	Labeled Tree Indexing Problem
	Indexing Forward/Backward Tries
	Indexing Forward Tries
	Indexing Backward Tries
	DAWGs (Directed Acyclic Word Graphs)
	Suffix Trees
	CDAWGs (Compact DAWGs)
	Sizes of Indexing Structures for Tries
	Sizes of Indexing Structures for Tries
	Matching Upper/Lower Bounds
	Linear-size Indexing for Forward Tries
	Connections of DAWG(T) and SuffixTree(T R)
	Simulating DAWG(T) edges with SuffixTree(T R)
	Conclusions and Open Question

