Pattern Matching on Compressed Texts II

Shunsuke Inenaga
Kyushu University, Japan
Agenda

- Fully Compressed Pattern Matching
- Straight Line Program
- Compressed String Comparison
- Period of Compressed String
- Pattern Discovery from Compressed String (Palindrome and Square)
- FCPM for 2D SLP
- Open Problems
Fully Compressed Pattern Matching [1/3]

compressed pattern: \&(aG

compressed text:

geoiy083qa0gj(#*gpfomo)#(JGWRE$(U)%ARY)(JPED(A%RJG)ER%U)JGODAAQWT$JGWRE)$REWJFDOPJJKSeoiy083qa0gj(#*gpfomo)#(JGWRE$(U)%ARY)(JPED(A%RJG)ER%U)JGODAAQWT$JGWRE)$geoiy083qa0gj(#*gpfomo)#(JGWRE$(U)%ARY)(JPED(A%RJG)ER%U)JGODAAQWT$JGWRE)$geoiy083qa0gj(#*gpfomo)#(JGWRE$(U)%ARY)(JPED(A%RJG)ER%U)JGODAAQWT$JGWRE)$
Fully Compressed Pattern Matching [2/3]

- **uncompressed** text
 - uncompressed pattern

- **compressed** text
 - uncompressed pattern

- **compressed** text
 - compressed pattern

- Classical pattern matching algorithm

- **compressed pattern** matching algorithm

- Fully compressed pattern matching algorithm
Possible Application of FCPM

compressed text

I’m here.

compressed pattern
Fully Compressed Pattern Matching [3/3]

FCPM Problem

Input: \(T = \text{compress}(T) \) and \(P = \text{compress}(P) \).

Output: Set \(\text{Occ}(T, P) \) of substring occurrences of pattern \(P \) in text \(T \).

- \(\text{Occ}(T, P) = \{ |u| + 1 : T = uPw, \ u, w \in \Sigma^* \} \)
Straight Line Program [1/2]

SLP T: sequence of assignments

$$X_1 = expr_1 ; X_2 = expr_2; \ldots ; X_n = expr_n;$$

X_k: variable,

$\begin{align*}
expr_k : \quad & a \quad (a \in \Sigma) \\
& X_iX_j \quad (i, j < k).
\end{align*}$

SLP T for string T is a CFG in Chomsky normal form s.t. $L(T) = \{T\}$.
Straight Line Program [2/2]

\[X_1 = a \]
\[X_2 = b \]
\[X_3 = X_1X_2 \]
\[X_4 = X_3X_1 \]
\[X_5 = X_3X_4 \]
\[X_6 = X_5X_5 \]
\[X_7 = X_4X_6 \]
\[X_8 = X_7X_5 \]

\[T = a b a a b a b a a b a a b a a b a a b a a b \]

\[N = O(2^n) \]
Straight Line Program [2/2]

\[T = \overbrace{a \ b \ a \ a \ b \ a \ b \ a \ a \ b \ a \ b \ a \ a \ b \ a \ a \ b}^{N} \]

\[N = O(2^n) \]
From LZ77 to SLP

For any string T given in LZ77-compressed form of size k, an SLP generating T of size $O(k^2)$ can be constructed in $O(k^2)$ time.

[Rytter ’00, ’03, ’04]
FCPM for SLP

FCPM Problem for SLP

Input: SLP T for text T and SLP P for pattern P.

Output: Compact representation of set $Occ(T, P)$ of substring occurrences of P in T.

- We want to solve the problem **efficiently** (i.e., polynomial time & space in n and m).
 - $n =$ the size of SLP T, $m =$ the size of SLP P

- $|T| = O(2^n) \implies T$ (also P) cannot be decompressed
- $|Occ(T,P)| = O(2^n) \implies$ compact representation
Key Definition

\[\text{Occ}^A(X, Y) = \{ i \in \text{Occ}(X, Y) \mid |X_l| - |Y| \leq i \leq |X_l| \} \]

set of occurrences of \(Y \) that cover or touch the boundary of \(X_l \) and \(X_r \).

\(X \): variable of \(T \)
\(Y \): variable of \(P \)
Key Lemma

\[\text{Obs}^\Delta(X, Y) \text{ forms a single arithmetic progression.} \]

[Miyaazaki et al. ’97]
Key Observation

\[
\text{Occ}(X, Y) = \text{Occ}(X_l, Y) \cup \text{Occ}^A(X, Y) \cup \text{Occ}(X_r, Y) \oplus |X_l|
\]

[Myazaki et al. ’97]

Computing \(\text{Occ}(X, Y)\) is reduced to computing \(\text{Occ}^A(X, Y)\).
Compact representation of $\text{Occ}(T, P)$ which answers a membership query to $\text{Occ}(T, P)$ in $O(n)$ time.

DP for $\text{Occ}^\wedge(X_i, Y_j)$

<table>
<thead>
<tr>
<th>X_n</th>
<th>$\text{Occ}^\wedge(X_n, Y_1)$</th>
<th>$\text{Occ}^\wedge(X_n, Y_j)$</th>
<th>$\text{Occ}^\wedge(X_n, Y_m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_i</td>
<td>$\text{Occ}^\wedge(X_i, Y_1)$</td>
<td>$\text{Occ}^\wedge(X_i, Y_j)$</td>
<td>$\text{Occ}^\wedge(X_i, Y_m)$</td>
</tr>
<tr>
<td>X_1</td>
<td>$\text{Occ}^\wedge(X_1, Y_1)$</td>
<td>$\text{Occ}^\wedge(X_1, Y_j)$</td>
<td>$\text{Occ}^\wedge(X_1, Y_m)$</td>
</tr>
<tr>
<td></td>
<td>Y_1</td>
<td>Y_j</td>
<td>Y_m</td>
</tr>
</tbody>
</table>
Known Results

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Space</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyazaki et al. ’97</td>
<td>$O(m^2n^2)$</td>
<td>$O(mn)$</td>
<td>SLP</td>
</tr>
<tr>
<td>Lifshits ’07</td>
<td>$O(mn^2)$</td>
<td>$O(mn)$</td>
<td>SLP</td>
</tr>
<tr>
<td>Hirao et al. ’00</td>
<td>$O(mn)$</td>
<td>$O(mn)$</td>
<td>Balanced SLP</td>
</tr>
</tbody>
</table>

Balanced SLP

![Balanced SLP Diagram]
Fully Compressed Subsequence Pattern Matching [1/2]

FC Subsequence PM Problem

Input: SLP T for text T and SLP P for pattern P.

Output: Find whether P is a subsequence of T.

- P is said to be a subsequence of T, if P can be obtained by removing zero or more characters from T.

Fully Compressed Subsequence Pattern Matching [2/2]

The Fully Compressed Subsequence Pattern Matching Problem on SLP compressed strings is NP-hard.

[Lifshits & Lohrey ’06]
Compressed String Comparison [1/2]

CSC Problem

Input : SLPs T and S for strings T and S, resp.

Output : Dis(similarity) of T and S.
Compressed String Comparison [2/2]

<table>
<thead>
<tr>
<th>Measure</th>
<th>Time</th>
<th>Space</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>$O(mn^2)$</td>
<td>$O(mn)$</td>
<td>Lifshits ’07</td>
</tr>
<tr>
<td>Hamming Distance</td>
<td>#P-complete</td>
<td>PSPACE</td>
<td>Lifshits ’07</td>
</tr>
<tr>
<td>Longest Common Substring</td>
<td>$O((m+n)^4\log(m+n))$</td>
<td>$O((m+n)^3)$</td>
<td>Matsubara et al. ’08</td>
</tr>
<tr>
<td>Longest Common Subsequence</td>
<td>NP-hard</td>
<td>PSPACE</td>
<td>Lifshits & Lohrey ’06</td>
</tr>
</tbody>
</table>
Property of common substrings [1/3]

- For each common substring Z of string S and T, there always exists a variable $X_i = X_lX_r$ and $Y_j = Y_LY_R$ such that:
 - Z is a common substring of X_i and Y_j
 - Z contains an overlap between X_l and Y_R
For each common substring Z of string S and T, there always exists a string w such that:
- w is a substring of Z
- w is an overlap of variables of S and T
Property of common substrings [1/3]

- For each common substring Z of string S and T, there always exists a string w such that:
 - Z can be calculated by expanding w
Computing Overlaps

Lemma [Karpinski et al. ’97]
For any variables X_i and X_j of SLP T, $OL(X_i, X_j)$ can be represented by $O(n)$ arithmetic progressions.

Theorem [Karpinski et al. ’97]
For any SLP T, $OL(X_i, X_j)$ can be computed in total of $O(n^4 \log n)$ time and $O(n^3)$ space for each i, j.

Compressed Period Problem

Input: SLP T for string T.

Output: Compact representation of set $\text{Period}(T)$ of periods of T.

- $\text{Period}(T) = \{ |T| - |u| : T = uv = wu, \nu, w \in \Sigma^+ \}$
An $O(n)$-size representation of $\text{Period}(T)$ can be computed in $O(n^4)$ time with $O(n^3)$ space.

[Lifshits ’06, ’07]
Compressed Palindrome Discovery Problem

Input: SLP T for string T.

Output: Compact representation of set $Pal(T)$ of maximal palindromes of T.

- $Pal(T) = \{(p,q) : T[p:q] \text{ is the maximal palindrome centered at } \lfloor (p+q)/2 \rfloor \}$

- ex. $T = baabbaa$
An $O(n^2)$-size representation of $\textit{Pal}(T)$ can be computed in $O(n^4)$ time with $O(n^2)$ space.

[Matsubara et al. ’08]
Composition System

CS \(T \): sequence of assignments

\[X_1 = expr_1 ; X_2 = expr_2; \ldots ; X_n = expr_n; \]

\(X_k \): variable,

\[expr_k : \begin{cases} a & (a \in \Sigma), \\ X_i X_j & (i, j < k), \\ \left[p\right] X_i X_j \left[q\right] & (i, j < k). \end{cases} \]

- \([p]X = X[1:p]\]
- \(X[q] = X[|X|-q+1:|X|]\)
From LZ77 to CS

For any string \(T \) given in LZ77-compressed form of size \(k \), a CS generating \(T \) of size \(O(k \log k) \) can be constructed in polynomial time.

[Gasieniec et al. ’96]
Compressed Square Discovery [1/2]

Compressed Square Problem

Input: CS T for string T.

Output: Check the square freeness of T (whether T contains a square or not).

- A square is any non-empty string of the form xx.
We can test square freeness of T in polynomial time in the size of given composition system T.

[Gasieniec et al. ’96, Rytter’00]
2D SLP

2D SLP T: sequence of assignments

$$X_1 = expr_1; \ X_2 = expr_2; \ldots; \ X_n = expr_n;$$

X_k : variable,

$$expr_k : \begin{cases}
\ a & (a \in \Sigma), \\
X_i \oplus X_j & (i, j < k, \ \text{height}(X_i) = \text{height}(X_j)), \\
X_i \boxplus X_j & (i, j < k, \ \text{width}(X_i) = \text{width}(X_j)).
\end{cases}$$

$$X_k = \begin{array}{c}
X_i \\
X_j
\end{array}$$ \hspace{1cm} horizontal concatenation \oplus

$$X_k = \begin{array}{c}
X_i \\
X_j
\end{array}$$ \hspace{1cm} vertical concatenation \boxplus
The Fully Compressed Pattern Matching Problem for 2D SLP is Σ_2^P-complete.

[Berman et al. ’97, Rytter’00]
Open Problems [1/2]

- Edit distance of two SLP-compressed strings.

- Compact representation of all maximal runs of an SLP-compressed string.
 - A run is any string x whose minimal period p satisfies $p \leq \frac{|x|}{2}$.
 - ex. $\overline{8} \quad (aab)^3 = aabaabaa$
Max Number of Runs in a String

N: (uncompressed) text length

0.927N
[Franek et al. ’03]

0.944565N
[Kusano et al. ’08]

1.048N
[Crochemore et al. ’08]

0.927N
[Franek et al. ’03]

1.00N

1.05N

3.44N
[Rytter ’07]

3.48N
[Puglisi et al. ’08]

5N
[Rytter ’06]

5N
[Kolpakov & Kucherov ’99]
Open Problems [2/2]

- Fully Compressed Tree Pattern Matching for grammar based XML compression.
 - TGCA (Tree Grammar Compression Algorithm) [Onuma et al. ’06]
References [1/5]

References [2/5]

References [3/5]

References [4/5]

References [5/5]

