Simple Linear-Time Off-Line
Text Compression by
Longest-First Substitution

Ryosuke Nakamura, Hideo Bannal,
Shunsuke Inenaga, Masayuki Takeda

Kyushu University, Japan

Lossless Compression

Uncompressed N Compressed

SN

Lossless Data Compression

* Dictionary-based Compression
— LZ77 [ZIv and Lemple, ‘77]
« BW Transform-based Compression
[Burrows and Wheeler, ‘94]
— Bzip
"« Grammar-based Compression
— SEQUITUR [Nevill-Manning and Witten ‘97]
— RE-PAIR [Larrson and Moffat ‘O0]

~

/

Fast compressed pattern matching [Kida et al. ‘03]

Grammar-based Compression

ababaabaaba
derive L

\‘[Our Target

‘?ncode
L

decode -

Grammar-based Compression

* There exist more than one grammar
generating the same string.

e Input string : aaaaaaaabaaaaaaaa

:S — aaaaaaaabaaaaaaaa}

ZS — AbA,A— BB,B — aaaa}
:S — AADAA, A — aaaa}

[S — AAAADAAAA, A — aa}

 We want a small grammarr.

Grammar-based Compression

here exist more than o [rammar

ge ting the! e

e |Input .
[——
‘ Finding the smallest grammar

IS NP-hard [Storer ’77]

S — AAb/
[S — AAAAbA A

 We want a small grammarr.

Greedy Method

* Recursively replaces frequent and/or long
factors by non-terminal symbols.

Input string: aaaaaaaabaaaaaaaa

S — XXXXDXXXX

X — aa

Replaced string : XXXXbXXXX
'S — YbY

X — aa
LY — XXXX

Greedy Method

 Most Frequent First Substitution (MFFS)
recursively replaces the most frequent factors
by non-terminal symbols

* Longest First Substitution (LFS)
recursively replaces the longest repeating
factors by non-terminal symbols

Greedy Method

 Most Frequent First Substitution (MFFS)

* Longest First Substitution (LFS)
recursively replaces the longest repeating
factors by non-terminal symbols

Text Compression
by Longest First Substitution
[Bentley and Mcliroy ‘99]

* Recursively replaces
Longest Repeating Factors (LRFs)
oy non-terminal symbols

abdcaa < longest repe

S — acdaabcacxXbXd, X—abdcaa

S — acdaabcacabdcaababdcaad
%g factor
S — YdaabcYXbXd, X—abdcaa, Y—ac ?

Time Complexities of
Longest First Substitution Approach

* n :length of input string
— naive algorithm : O(n%) time ®

— algorithm using minimal augmented suffix
trees [Brodal et al. '02] : O(n?log n) : time &
— our algorithm : O(n) time ©

Our algorithm

« Uses a new data structure
sparse lazy suffix trees (SLSTrees)
based on suffix trees [Weiner '73];

 Runs in linear time and space.

Algorithm Flow Chart

input string

| constct stsTree |0)(1)

oM —

replaced string /

O(1)(amortized)

O(1)(amortized)

O(n) + O(n) = O(n) time

How to find Longest Repeating Factor

%% ggggggéo length of

! factor
a®b (1,9) . .
(o 8) | b /s beginning positions
b (min,max)
b 10 a % ab 4 =~
5 aa/ \$ 3 (1,4)
/o3l b b/ M en P B S —atsbab
] b A =hisab_
b/g ™
2/ 1012345678910 2 ab
3\ bab
bab

If we use suffix tree...

abbabbabab$ abXXab$

1 o(n)

Using sparse lazy suffix tree

abbabbabab$ abXXab$ YXXY$

% lazy
update

What Is laziness?
0123456/8910 length of next longest repeating factor =

abX-=X==ab $ length of current longest repeating factor
length of)

longest

repeating ~ updated

factor (candidates for next LRF)

not updated

Ve

not replaced

012345678910

abX-+*X--ab $

What Is laziness?

length of /\ O R @

na
0

fa

Our algorithm takes linear time

length of next longest repeating factor =
length of current longest repeating factor

axt LRF)

ated

/

d
\b w not replaced
$ 1

Smaller grammar with
Longest First Substitution (LFS2)

e Consider the right side of production rules
constructed by the LFS method.

abbab

b
(S - XYbYX$

bbab

X — €

want to replace with Y

\Y—>bbab‘

abbab$

[S — XbbabbbbabX$
X — abbab

XbbabbbbabX$,hhabs,
(S - XYbYX$

s |

Smaller grammar with
Longest First Substitution (LFS2)

e Consider the right side of production rules
constructed by the LFS method.

abbab b abbab$

LFS
'S — XYbYX$ [S — XYbYX$
X — abbab X —aY
LY — LY —
grammar size 15

grammar size : total length of the right side of production rules.

Smaller grammar with
Longest First Substitution (LFS2)

e Consider the right side of production rules
constructed by the LFS method. ()

abbd{ D

We developed a linear

time algorithm for LFS2. DY X$

grammar Sh=< 15

grammar size : total length of the right side of production rules.

Comparison of grammar sizes

* |nput texts : Canterbury Corpus

Size total grammar size

File (Bytes) || MFFS| TFS [LFS2
alice29.txt 152090 || 38750 | 88333 || 45225
asyoulik.txt | 125179 || 35245 | 74747 || 41755
cp.html 24603 8006 | 14559 | 7977
fields.c 11150 3035 | 6525 f 3307
grammar.lsp 3721 1597 | 2332 | 1431
kennedy.xls | 1029744 || 165589 | 291536 || 166250
lcet 10.txt 420754 || 84923 | 235112 || 103602
plrabnl2.txt | 481861 || 116128 | 276714 [144078
Dtth 513216 || 42813 | 266040 | 47885
sum 38240 13023 | 20846

xargs.1 4227 2096 | 2772

Conclusions

 We developed

—a linear time algorithm for longest first
substitution (LFS);

—a linear time algorithm for LFS2.

 LFS2 generates smaller grammars than
MFES for small files.

Future Work

« Efficient encoding of LFS grammars to bit
strings.

 Compressed pattern matching specialized
for LFS compressed texts.

— The right side of most production rules
consists only of terminal symbols (not LFS2).
e.g., S — YdaabcYXbXd, X—abdcaa, Y—ac
There should be efficient pattern matching
algorithms for this.

