
Practical Algorithms for Pattern Based Linear
Regression

Hideo Bannai1, Kohei Hatano1, Shunsuke Inenaga1,2, and Masayuki Takeda1,3

1 Department of Informatics, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

{bannai, hatano, shunsuke.inenaga, takeda}@i.kyushu-u.ac.jp
2 Japan Society for the Promotion of Science

3 SORST, Japan Science and Technology Agency (JST)

Abstract. We consider the problem of discovering the optimal pattern
from a set of strings and associated numeric attribute values. The good-
ness of a pattern is measured by the correlation between the number
of occurrences of the pattern in each string, and the numeric attribute
value assigned to the string. We present two algorithms based on suffix
trees, that can find the optimal substring pattern in O(Nn) and O(N2)
time, respectively, where n is the number of strings and N is their total
length. We further present a general branch and bound strategy that can
be used when considering more complex pattern classes. We also show
that combining the O(N2) algorithm and the branch and bound heuristic
increases the efficiency of the algorithm considerably.

1 Introduction

Fundamental biological molecules such as DNA, RNA, and proteins can be re-
garded as strings over a certain alphabet. Although the whole genomic sequences
of many species are now becoming available, there is still much that is unknown
about the information that lie hidden in them. Computational analysis of these
sequences rely on the principle that similarity as strings implies similarity in their
sequence structure, which in turn implies similarity in their functions. There-
fore, methods for efficiently and effectively discovering meaningful patterns, or
sequence elements which are conserved in a given set of strings, is an important
problem in the field of Bioinformatics [1].

Earlier work on pattern discovery focus on discovering the most conserved
pattern in a given set of strings, generally preferring longer patterns which occur
in most of the sequences in the set. Another situation is when we are given two
sets of strings, where one set (positive set) consists of sequences known to possess
some biological characteristic, while the other (negative set) consists of sequences
known not to posses these characteristics. The problem is to find a discriminating
pattern, that is, a pattern which occurs in most strings of the positive set, but
does not occur in most of the strings of the negative set [2–6].

Recently, there have been several works which incorporate numeric attributes
which are obtained from other sources, e.g. gene expression data obtained from

microarray experiments, in order to find meaningful patterns more effectively [7–
11]. The basic idea of these methods is to find sequences elements whose occur-
rences in the sequences are correlated with the numeric attributes. For example,
gene expression is regulated by molecules called transcription factors, which bind
to specific sequences usually in the upstream of the coding region of a gene. The
binding sites for a given transcription factor are fairly conserved across genes
which are regulated by the same transcription factor. Therefore, if we can find
sequence elements which occur in upstream regions of genes which are relatively
highly expressed, while not occurring in upstream regions of genes whose expres-
sion is relatively low (or vice versa), such patterns are likely to be binding sites
of specific transcription factors.

In [7], substring patterns of up to length 7 are scored according to the linear
fit between the number of occurrences in the upstream region and the expression
level of the gene. However, they do not consider any algorithm for solving the
problem efficiently. Also, the choice of the maximum pattern length is arbitrary
and it is not guaranteed that the optimal pattern will be found. Algorithmic
work for solving a similar problem has been considered in [8,9]. In this problem
setting, the number of occurrences of a pattern is only considered as an indicator
value of 0 or 1, i.e. whether the pattern occurs in the string or not. Based on
the algorithm for solving the color set size problem [12], a very efficient O(N)
time algorithm for finding the optimal substring pattern in this problem setting
is given in [9]. A general branch and bound strategy that can be used for more
complex patterns where the problem can be NP-hard, is given in [8].

Although the algorithms above have been shown to discover similar motifs as
in [7], it is generally believed that multiple occurrences of a binding site motif in
the upstream region of a gene will strengthen the function of the transcription
factor for that gene. In this paper, we give an efficient algorithm to discover the
optimal pattern, taking into account the number of occurrences of the pattern
in each string, as in the problem setting in [7]. We first present two simple
algorithms based on the suffix tree data structure that finds the optimal substring
pattern (without a restriction in the length of the pattern), respectively in O(nN)
and O(N2) time. We further develop and apply a branch and bound strategy
in order to speed up the algorithm, also allowing the problem to be solved for
more complex and descriptive classes of patterns. The algorithms developed are
applied to real biological data to show the efficiency and effectiveness of the
approach.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, substring, and suffix of string w = xyz, respectively.
The length of a string w is denoted by len(w). The empty string is denoted by
ε, that is, len(ε) = 0. For any set S, let |S| denote the cardinality of the set.
The empty set is denoted by ∅, that is, |∅| = 0. Let R represent the set of real
numbers.

2

Let Π be a set of patterns. We call a function defined over a text string and
pattern ψ : Σ∗ × Π → R a matching function. Let ψp : Σ∗ → R represent
the matching function for a fixed p ∈ Π, that is, ψ(s, p) = ψp(s) for any text
string s ∈ Σ∗. For the matching function value, we shall consider the number
of occurrences of a given pattern in the text string. A substring pattern p is a
pattern p ∈ Π = Σ∗, where the matching function value ψp(s) is defined as the
number of substrings in s which is equal to p. A don’t care pattern p is a pattern
p ∈ Π = ({.}∪Σ)∗, where “.” is a don’t care symbol, and the matching function
value ψp(s) is defined as the number of substrings in s which can be obtained
from p by appropriate substitution of the don’t care symbols with characters of
the alphabet Σ. For the above two pattern classes, we shall refer to Σ or {.}∪Σ
as the pattern alphabet.

For the rest of the paper, we assume that we are given as input, a sequence
of ordered pairs consisting of a string and an associated numeric attribute value:
{(s1, y1), . . . , (sn, yn)} ⊂ Σ∗ × R. Let N =

∑n
i=1 len(si) represent the total

length of the input strings. We denote by y = (y1, . . . , yn)T ∈ Rn , the vector
consisting of the numeric attribute values. Further, for a given pattern p, we
denote by ψp(s) = (ψp(s1), . . . , ψp(sn))T ∈ Rn, the vector consisting of the
matching function values for the input text strings. We define for later use, a
preorder over patterns as follows:

Definition 1. For any p′, p ∈ Π, denote p′ ¹ p if for all {si | i = 1, . . . , n},
ψ(si, p

′) ≤ ψ(si, p).

We now consider how to score the goodness of a given pattern. For a given
x = (x1, . . . , xn)T ∈ Rn, let X = (1,x), and define

RSS (y|x) = ||y − Xβ̂||2 =
n∑

i=1

(yi − (β̂0 + β̂1xi))2

where β̂ = (β̂0, β̂1)
T

are the least square estimates of β in the linear model

y = Xβ + ε.

We consider the problem of finding the pattern which can best fit the numeric
attribute values yi with respect to ψp(si).

Definition 2 (Pattern Based Linear Regression). We define the pattern
based linear regression problem as follows. Given {(s1, y1), . . . , (sn, yn)} ⊂ Σ∗ ×
R, and a matching function ψ, find the pattern p ∈ Π that minimizes

RSS (y|ψp(s)) = ||y − (1,ψp(s))β̂||2 =
n∑

i=1

(yi − (β̂0 + β̂1ψp(si)))2

where β̂ = (β̂0, β̂1)
T

are the least square estimates of β in the linear model

y = (1,ψp(s))β + ε.

3

We note that the consistency problem [13,14] is a special case of our problem.
Since the consistency problem is shown to be NP-complete for several pattern
classes (e.g. subsequence patterns), the above problem is NP-hard for such cases.
An exception is the case for the substring pattern class, for which we shall present
efficient solutions in Section 3.

3 Methods

3.1 Finding the Optimal Substring Pattern

When considering substring patterns, it can be shown that the number of pos-
sible patterns which give distinct RSS scores is linear in the total length of
strings, i.e. O(N). We make use of a very convenient and well studied data
structure called suffix trees.

Generalized Suffix Trees A suffix tree [15] for a given string s is a rooted tree
whose edges are labeled with substrings of s, satisfying the following character-
istics. For any node v in the suffix tree, let l(v) denote the string spelled out
by concatenating the edge labels on the path from the root to v. For each leaf
node v, l(v) is a distinct suffix of s, and for each suffix of s, there exists such a
leaf v. Furthermore, each node has at least two children, and the first character
of the labels on the edges to its children are distinct. A generalized suffix tree
(GST) for a set of n strings S = {s1, . . . , sn} is basically a suffix tree for the
string s1$1 · · · sn$n, where each $i (1 ≤ i ≤ n) is a distinct character which does
not appear in any of the strings in the set. However, all paths are ended at the
first appearance of any $i, and each leaf is labeled with idi. An example of a
GST is shown in Fig. 1. It is well known that suffix trees (and generalized suffix
trees) can be represented in linear space and constructed in linear time [15] with
respect to the length of the string (total length of the strings for GST).

Notice that candidate substring patterns may be restricted to those repre-
sented by nodes of the generalized suffix tree. This is because, for any substring
pattern that does not correspond to a path in the suffix tree, the pattern does
not occur in any of the strings in the set. Also, note that for a given pattern that
does correspond to a path in the suffix tree, all occurrences of the pattern in the
strings are represented by the leaves of the suffix tree in the subtree below this
path. This means that for any substring pattern that corresponds to a path that
ends in the middle of an edge of the suffix tree, its occurrences in the strings are
identical to the occurrences of the substring pattern corresponding to the path
extended to the next node.

As stated in the Introduction, the pattern based linear regression problem
has been shown to be solvable in O(N) time if the matching function is con-
sidered to be an indicator function returning the value 0 or 1 [9]. However, it
is assumed that the score of a pattern is a function of the sum of the matching
function values and the sum of the numeric attribute values of the strings that
the pattern occurs in. The algorithm cannot be applied to our case since we

4

a

a

a

a
b

b

b

b

b

b

b

b

$1

$1
$1

$1 $2

$2

$2

$2

$1

$2

6 1 7 3 2 8 4 9 5 10
2 1 2 1 1 2 1 2 1 2id

Fig. 1. Example of a generalized suffix tree for the string set { abab, aabb }.

require the matching function values of each string in order to compute the RSS
score. Below, we give two algorithms which calculate the score for each candidate
pattern p corresponding to a node in the generalized suffix tree.

An O(N2) Algorithm Calculating the score for each of the O(N) candidate
patterns requires the calculation of ψp(s) for each p, as well as the calculation
of the least square estimates. The former can be calculated in O(N) time using
well known linear time string pattern matching algorithms such as the Knuth-
Morris-Pratt algorithm [16]. The latter can be calculated by first obtaining the
least square estimate of the parameters:

β̂ = (XT X)−1XT y,

where X = (1,ψp(s)). It is not difficult to see that this can be calculated in
O(n) time. Further, RSS (y|ψp(s)) can be calculated in O(n) time, and therefore
the resulting time complexity is O(N) · O(N + n) = O(N2).

An O(Nn) Algorithm Consider assigning a vector of length n at each node
and leaf of the suffix tree. The vectors are initialized as follows: for an internal
node, all values are set to 0. For a leaf labeled with idi, the value at the ith
position is set to 1, and the rest is set to 0. Then, with a bottom-up (postorder)
traversal on the suffix tree, we add up the values in the vector at each node,

5

element-wise, into the vector of its parent node. The result is that we obtain, at
each node, a vector of length n where each position i of the vector represents the
number of leaves in the subtree of the suffix tree, with idi. This corresponds to the
number of times the substring pattern occurs in string si, and consequently, the
vector represents ψp(s). This means that ψp(s) can be calculated in O(n) time
for each pattern, resulting in a total of O(Nn) time for the score calculations.

3.2 Branch and Bound Strategy

Since the pattern based linear regression problem can be NP-hard when con-
sidering more complex pattern classes, we propose an enumerative branch and
bound framework for finding the optimal pattern. The basic idea of the enumer-
ation is similar to previous works [2–6, 8]. The main contrivance of this paper
is in the method for calculating the lower bound of the RSS score for specific
subspaces of the pattern space.

The algorithm proceeds by traversing and enumerating nodes on a search tree,
where each node in the tree represents some pattern in Π. For any pattern p in
the search tree, let p′ be a pattern represented by a node in the subtree rooted
at the node for p. While traversing the search tree at the node corresponding
to p, suppose that we are able to calculate a lower bound for the RSS for any
pattern p′. If this lower bound is greater than the current best RSS found in
the traversal, we know that the score for p′ cannot be below the current best
RSS . This allows us to prune the search space by disregarding the subtree of
the search tree rooted at the node corresponding to p.

Below, we show how such a lower bound can be calculated. The assumptions
for our calculations below is that p′ ¹ p. For the case of string patterns and
don’t care patterns, this assumption can be fulfilled by considering the search
tree described as follows. The root corresponds to the empty string ε, and each
node v will have child nodes whose pattern corresponds to the pattern obtained
by extending the pattern at node v by one character of the pattern alphabet. Al-
though we do not elaborate in this paper, the same branch and bound approach
can be applied to a variety of other patterns such as approximate patterns and
degenerate patterns.

Problem 1 (lower bound of the residual sum of squares for p′ ¹ p). Given some
pattern p ∈ Π, find a lower bound of the score function RSS (y|ψp′(s)) for any
pattern p′ ¹ p.

Below, let x = (x1, . . . , xn)T = ψp(s). Also, let xopt = (xopt
1 , . . . , xopt

n)
T

=
arg minz∈Dx RSS (y|z) where Dx = {(z1, . . . zn)T | 0 ≤ zi ≤ xi, i = 1, . . . , n},
and let β̂opt = (β̂opt

0 , β̂opt
1) be the least square estimates for the linear model

y = (1,xopt)β + ε. Our objective now is to find RSS (y|xopt). This can be
considered as a relaxed version of the problem stated above, since we do not
require that there exists a pattern p′ ¹ p such that ψp′(s) = xopt. The following
theorem gives a simple lower bound on the RSS score.

6

Algorithm 1: Simple algorithm for calculating a lower bound of RSS .

Input: x = (x1, . . . , xn)T ,y = (y1, . . . , yn)T

Output: lb ≤ min{RSS(y|z) | z = (z1, . . . , zn)T , 0 ≤ x′
i ≤ xi}

X ← {i | xi = 0};1

if X = ∅ then return 0; /* Can move all xi onto a single line. */2

m ←
∑

i∈X
yi/|X|; /* mean of values {yi | xi = 0} */3

lb =
∑

i∈X
(m − xi)

2; /* residual sum of squares for points {xi = 0} */4

return lb5

Theorem 1 (simple lower bound). Let X = {i | xi = 0}. If X 6= ∅, then∑
i∈X

(m − yi)2 ≤ RSS (y|xopt)

where m =
∑

i∈X yi/|X|.

Proof. For any i, if xi = 0, then since 0 ≤ xopt
i ≤ xi we have that xopt

i = 0.
Ignoring the residuals for all data points x 6= 0, the minimum possible residual
sum of squares for data where xi = xopt

i = 0 must be smaller than the residual
sum of squares for the entire data set. ut

The simple lower bound can be calculated with the pseudo-code shown in Algo-
rithm 1.

Next, we try to improve on this lower bound. The following lemma gives the
conditions between xopt and the regression line.

Lemma 1. For all i = 1, . . . , n, if β̂opt
1 > 0 then

xopt
i =

{
0 if xi = 0 or yi ≤ β̂opt

0

(yi − β̂opt
0)/β̂opt

1 otherwise (xi > 0 and yi > β̂opt
0)

and if β̂opt
1 < 0,

xopt
i =

{
0 if xi = 0 or yi ≥ β̂opt

0

(yi − β̂opt
0)/β̂opt

1 otherwise (xi > 0 and yi < β̂opt
0).

Proof. We will prove the case for β̂opt
1 > 0. The case for β̂opt

1 < 0 can be done
similarly. The lemma states that the points (xopt

1 , y1), . . . , (xopt
n , yn) lie either

on the regression line y = β̂opt
0 + β̂opt

1 x, or on the y-axis. Suppose there exist
points (xopt

i , yi) to the contrary, that is, xopt
i > 0 and the point is not on the

regression line. If yi < β̂opt
0 , then since β̂opt

1 > 0, considering point (0, yi) instead
of (xopt

i , yi) would give a smaller residual, contradicting the definition of xopt.
If yi > β̂opt

0 , then again since β̂opt
1 > 0, (xopt

i , yi) cannot lie to the right of the
regression line, or we can replace (xopt

i , yi) with a point ((yi − β̂opt
0)/β̂opt

1 , yi)
on the regression line with a smaller residual. We can also say that the points

7

cannot lie left of the regression line, since we can construct a new regression
line passing the point (0, β0) that lies left of the points, and replace all points
(xopt

i , yi) with points on the new regression line. The residual of the new points
are clearly smaller, and again contradicts the definition of xopt. ut

Corollary 1. Let Xopt = {i | xopt
i = 0}. If Xopt = ∅, RSS(y|xopt) = 0. If

Xopt 6= ∅, then

β̂opt
0 =

∑
i∈X

yi/|Xopt|

and
RSS(y|xopt) =

∑
i∈Xopt

(β̂opt
0 − xopt

i)2.

Proof. As a consequence of Lemma 1. If X = ∅, then all points (xopt
i , yi) lie on

the regression line. Otherwise, since the residual for all points xopt
i > 0 is 0, β0

is chosen to minimize the residual sum of squares of points where xopt
i = 0. ut

In order to calculate the lower bound, the problem now is how to obtain the
value β̂opt

0 . Although the exact value of β̂opt
0 is not known beforehand, Algo-

rithm 2 shows how to calculate the minimum residual sum of squares for any
z = (z1, . . . , zn)T satisfying the constraint: 0 ≤ zi ≤ xi for all i = 1, . . . , n.

Corollary 2. Let

Xopt
+ = {i ∈ Xopt | yi > β̂opt

0 }
Xopt

− = {i ∈ Xopt | yi ≤ β̂opt
0 }.

If β̂opt
1 > 0, then

Xopt
+ = {i | xi = 0, yi > β̂opt

0 }
Xopt

− = {i | yi ≤ β̂opt
0 }.

If β̂opt
1 < 0, then

Xopt
+ = {i | xi = 0, yi < β̂opt

0 }
Xopt

− = {i | yi ≥ β̂opt
0 }.

Proof. As a consequence of Lemma 1. When β̂opt
1 > 0 and yi > β̂opt

0 , xopt
i = 0 if

and only if xi = 0. Similarly, when β̂opt
1 < 0 and yi < β̂opt

0 , xopt
i = 0 if and only

if xi = 0. ut

Theorem 2. Algorithm 2 correctly outputs RSS (y|xopt).

8

Algorithm 2: Algorithm for calculating the lower bound of RSS .

Input: x = (x1, . . . , xn)T , y = (y1, . . . , yn)T

Output: min{RSS(y|z) | z = (z1, . . . , zn)T , 0 ≤ x′
i ≤ xi}

X ← {i | xi = 0}; k ← 1;1

if X = ∅ then return 0 ; /* Can move all xi onto a single line. */2

// assuming β̂opt
1 > 0 //

m ←
∑

i∈X
yi/|X|; /* mean of values {yi | xi = 0} */3

(i1, . . . , in−|X|) ← indices sorted in increasing order of {yi | i 6∈ X} ;4

while yik ≤ m do5

X ← X ∪ {ik}; /* xik → 0 */6

m ←
∑

i∈X
yi/|X|; /* update mean */7

k ← k + 1;8

endw9

lb =
∑

i∈X
(m − xi)

2; /* m = β̂opt
0 and X = Xopt if β̂opt

1 > 0 */10

// assuming β̂opt
1 < 0 //

X ← {i | xi = 0}; k ← 1;11

m ←
∑

i∈X
yi/|X|; /* mean of values {yi | xi = 0} */12

(i1, . . . , in−|X|) ← indices sorted in decreasing order of {yi | i 6∈ X} ;13

while yik ≥ m do14

X ← X ∪ {ik}; /* xik → 0 */15

m ←
∑

i∈X
yi/|X|; /* update mean */16

k ← k + 1;17

endw18

return min{lb,
∑

i∈X
(m − xi)

2}; /* m = β̂opt
0 and X = Xopt if β̂opt

1 < 0 */19

Proof. Consider the case where {i | xopt
i = 0} 6= ∅ and β̂opt

1 > 0. The claim
is that m = β̂opt

0 , and X = Xopt, after the while loop of lines 5–9. If this
can be proved, the result follows from Corollary 1. Let us split the set X thus
calculated into two disjoint sets, X+ = {i ∈ X | yi > m} and X− = {i ∈
X | yi ≤ m}. Since the algorithm does not add indices i where yi > m to
X, we have that X+ = {i | xi = 0, yi > m} from the initial construction of
X at line 1. Also, since all indices i where yi ≤ m are added to X, we have
that X− = {i | yi ≤ m}. Suppose m < β̂opt

0 . From Corollary 2, we have that
X+ ⊇ Xopt

+ , and X− ⊆ {i | yi ≤ β̂opt
0 } = Xopt

− . However, this contradicts the
assumption, since

∑
i∈X yi/|X| = m ≥ β̂opt

0 =
∑

i∈Xopt yi/|Xopt|. Next, suppose
m > β̂opt

0 . We have the opposite situation and X+ ⊆ Xopt
+ and X− ⊇ Xopt

− .
However, due to the way X is constructed, there must have been a point in the
while loop (lines 5–9) where all indices i where yi ≤ β̂opt

0 are added to X, and
no index i where yi > β̂opt

0 is added to X. From Corollary 2, at such point,
X+ = Xopt

+ and X− = Xopt
− , which implies that m = β̂opt

0 . Due to the condition
of the while loop, no other index i where yi > β̂opt

0 could have been added to X

afterwards, contradicting the assumption m > β̂opt
0 . Therefore, m = β̂opt

0 , and
consequently X = Xopt. ut

9

a
v
g
 a

t
0

s
h
ift to

 0

y

x

y

x

Fig. 2. Case of Algorithm 2 where X = ∅ (left) and X 6= ∅, β1 > 0 (right).

Fig. 2 shows the basic idea of Algorithm 2. The time complexities of Algo-
rithm 1 and 2 are both O(n), since they just conduct a constant number of scans
on the data set, provided that the data is initially sorted and ranked according
to yi, so that the sorting at lines 4 and 13 of Algorithm 2 can be computed in
O(n) time.

Combining Suffix Tree Traversal and Branch and Bound It is easy to
see that for substring patterns, the generalized suffix tree itself can be used
as the search tree, and we can combine the O(N2) algorithm and the pruning
strategy described in this section. Combining the O(Nn) algorithm and the
pruning strategy is not readily realizable, since the direction of the traversal
over the search tree is in the reverse direction. We discuss this issue further in
Section 5.

4 Computational Experiments

We implement our algorithms using the C++ language, and measure the running
times of our algorithm using a Sun Fire 15K (UltraSPARC III Cu 1.2GHz x
96 CPUs) using a single processor for each run. We note that the suffix tree
algorithm is simulated by a suffix array structure, using the method presented
in [17,18].

For the numeric attribute values, we use the S. cerevisiae gene expression
data obtained from microarray experiments given in [19]. The data consists of
normalized log expression level ratios of genes at specific time points of the yeast
cell cycle. For the string data, we use the 600 nucleotides from the upstream of
the start codon of each gene.

Table 1 shows the running times of the algorithms for finding the optimal
substring pattern applied to the expression data of the 14-minute time point in

10

Table 1. Comparison of running times of algorithm for finding optimal substring
patterns from the 14-minute time point in the α-synchronized cell-cycle microarray
experiment [19].

n O(Nn) O(N2)
O(N2)+
simple bb

O(N2)+bb

100 05.96s 12.43s 05.90s 05.71s

500 00m37s 01m47s 00m30s 00m26s

1000 02m03s 05m28s 01m02s 00m53s

1500 04m09s 11m16s 01m35s 01m19s

2000 07m53s 19m55s 02m00s 01m38s

2500 12m30s 30m05s 02m35s 02m07s

3000 18m20s 42m17s 03m29s 02m51s

3500 25m17s 56m34s 04m11s 03m23s

4000 33m08s 73m06s 04m52s 03m55s

4500 42m48s 92m16s 05m34s 04m28s

5000 55m03s 113m20s 06m13s 04m59s

5500 67m01s 136m25s 07m08s 05m41s

5907 75m55s 157m27s 07m57s 06m21s

the α-synchronized cell-cycle microarray experiment. The times are measured for
various sizes of n by a random sampling from the entire set of 5907 genes which
were available for this time point. Note that since all strings are of fixed length,
N = 600n. From the table, we see that the O(Nn) and O(N2) time algorithms
are able to find the optimal pattern in a reasonable amount of time. However, we
can see that O(N2)+bb (the O(N2) algorithm with the branch and bound strat-
egy Algorithm 2) is much faster for all input sizes. Although O(N2)+simple bb
(the O(N2) algorithm with the simple branch and bound strategy Algorithm 1)
is fairly efficient as well, the extra work invested in the O(N2) + bb algorithm is
payed off by a ∼ 20% reduction in the overall computation time.

To show that the algorithm also allows for the discovery of more complex
patterns in a practical amount of time, we searched for the optimal don’t care
pattern on the same data set. The search took 765 minutes and 529 minutes,
respectively, using simple bb and bb with a simple enumeration of don’t care
patterns, limiting the maximum length of the pattern to 15 and the number of
don’t cares characters in the pattern to 20% of its length.

5 Discussion

We presented efficient algorithmic solutions to the problem of discovering the
optimal pattern in terms of a linear least squares fitting of the numeric attribute
values associated with strings, and the matching function values. The efficiency
of the algorithms are confirmed through computational experiments conducted
on actual biological data.

11

In [20], the branch-and-bound enumerative search was applied in the reverse
direction for finding the optimal degenerate pattern that discriminates between
a positive string set and negative string set, where the matching function is
an indicator function. In their search, the search tree is essentially traversed
bottom-up. A bound on the score is computed in a similar way as for the original
direction, and the traversal on the search can be pruned. This reverse direction
is, however, difficult to achieve for the problem considered in this paper. This
is because in the original direction, the bound is calculated from the numeric
attribute values of strings which do not match the pattern (ψp(si) = 0), which
is possible due to the condition ψp(si) ≥ 0. In order to calculate a bound for the
reverse direction, we would need to assume a maximum value c where ψp(si) ≤ c,
and we would calculate a bound for the residual sum of squares from the numeric
attribute values of strings which give ψp(si) = c. However, the matching function
used in this paper is not suitable, since the maximum value would change for
each string.

The lower bound calculated in this paper underestimates the actual minimum
value that can be achieved with the matching function and numeric attribute
values. This is because we did not require that there exist a pattern whose
matching function values would be equal to xopt. Notice that when calculating
the lower bound, xopt is obtained by considering points on the regression line.
However, we know that the matching function will only take discrete integer
values, and it may not be possible for some xopt

i to lie on the regression line.
Residuals for such points will not be zero, and would therefore increase the
lower bound. Finding an efficient way to calculate a better lower bound for the
discretized version of the problem is an interesting open problem.

Acknowledgements

Computation time was provided in part by the Super Computer System, Human
Genome Center, Institute of Medical Science, University of Tokyo.

References

1. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic
discovery of patterns in biosequences. J. Comput. Biol. 5 (1998) 279–305

2. Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algo-
rithm to find the best subsequence patterns. Theoretical Computer Science 292
(2002) 465–479

3. Shinohara, A., Takeda, M., Arikawa, S., Hirao, M., Hoshino, H., Inenaga, S.: Find-
ing best patterns practically. In: Progress in Discovery Science. Volume 2281 of
LNAI., Springer-Verlag (2002) 307–317

4. Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S.: Discovering most
classificatory patterns for very expressive pattern classes. In: 6th International
Conference on Discovery Science (DS 2003). Volume 2843 of LNCS., Springer-
Verlag (2003) 486–493

12

5. Hirao, M., Inenaga, S., Shinohara, A., Takeda, M., Arikawa, S.: A practical al-
gorithm to find the best episode patterns. In: Proc. 4th International Conference
on Discovery Science (DS2001). Volume 2226 of LNAI., Springer-Verlag (2001)
435–440

6. Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering
best variable-length-don’t-care patterns. In: Proceedings of the 5th International
Conference on Discovery Science. Volume 2534 of LNAI., Springer-Verlag (2002)
86–97

7. Bussemaker, H.J., Li, H., Siggia, E.D.: Regulatory element detection using corre-
lation with expression. Nature Genetics 27 (2001) 167–171

8. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M., Miyano, S.: A string pat-
tern regression algorithm and its application to pattern discovery in long introns.
Genome Informatics 13 (2002) 3–11

9. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M., Miyano, S.: Efficiently finding
regulatory elements using correlation with gene expression. Journal of Bioinfor-
matics and Computational Biology 2 (2004) 273–288

10. Zilberstein, C.B.Z., Eskin, E., Yakhini, Z.: Using expression data to discover RNA
and DNA regulatory sequence motifs. In: The First Annual RECOMB Satellite
Workshop on Regulatory Genomics. (2004)

11. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An
O(N2) algorithm for discovering optimal Boolean pattern pairs. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 1 (2004) 159–170 (spe-
cial issue for selected papers of WABI 2004).

12. Hui, L.: Color set size problem with applications to string matching. In: Proceed-
ings of the Third Annual Symposium on Combinatorial Pattern Matching (CPM
92). Volume 644 of LNCS., Springer-Verlag (1992) 230–243

13. Miyano, S., Shinohara, A., Shinohara, T.: Which classes of elementary formal
systems are polynomial-time learnable? In: Proceedings of the 2nd Workshop on
Algorithmic Learning Theory. (1991) 139–150

14. Miyano, S., Shinohara, A., Shinohara, T.: Polynomial-time learning of elementary
formal systems. New Generation Computing 18 (2000) 217–242

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

16. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6 (1977) 323–350

17. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: 12th An-
nual Symposium on Combinatorial Pattern Matching (CPM 2001). Volume 2089
of LNCS., Springer-Verlag (2001) 181–192

18. Kasai, T., Arimura, H., Arikawa, S.: Efficient substring traversal with suffix arrays.
Technical Report 185, Department of Informatics, Kyushu University (2001)

19. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.
Mol. Biol. Cell 9 (1998) 3273–3297

20. Shinozaki, D., Akutsu, T., Maruyama, O.: Finding optimal degenerate patterns in
DNA sequences. Bioinformatics 19 (2003) ii206–ii214

13

