
String Kernels Based on
Variable-Length-Don’t-Care Patterns

Kazuyuki Narisawa1, Hideo Bannai1, Kohei Hatano1,
Shunsuke Inenaga2, and Masayuki Takeda1

1Department of Informatics, Kyushu University
2Graduate School of Information Science and Electrical Engineering,

Kyushu University
744 Motooka, Nishiku, Fukuoka, 819–0395 Japan.

{k-nari,bannai,hatano,takeda}@i.kyushu-u.ac.jp
inenaga@c.csce.kyushu-u.ac.jp

Abstract. We propose a new string kernel based on variable-length-
don’t-care patterns (VLDC patterns). A VLDC pattern is an element of
(Σ∪{⋆})∗, where Σ is an alphabet and ⋆ is the variable-length-don’t-care
symbol that matches any string in Σ∗. The number of VLDC patterns
matching a given string s of length n is O(22n). We present an O(n5)
algorithm for computing the kernel value. We also propose variations of
the kernel which modify the relative weights of each pattern. We evaluate
our kernels using a support vector machine to classify spam data.

1 Introduction

Text classification techniques in machine learning have a wide range of applica-
tions such as natural language processing and bioinformatics. These techniques
are based on the similarity of words, sequences or other string units with a dictio-
nary of natural language, biological actions and periodicities. It is a challenging
task to efficiently compute these similarity measures, and the kernel method is
one of the classical approaches for evaluating string similarity.

Several string kernels have been developed for various types of data. Mis-
match kernels [1] are used for biological data such as DNA and protein sequences.
This kernel allows mismatches between sequences. Rational kernels [2, 3] can sep-
arate regular languages, using weighted transducers or rational relations.

The string subsequence kernels (SSKs) and N -gram kernels (NGKs) [4] are
popular string kernels. They are easy to compute, and can be applied to a vari-
ety of data since they do not make too many assumptions about the underlying
text structure. SSKs map strings to a feature space where each dimension cor-
responds to a subsequence of length n. The value of the dimension depends on a
subsequence gap weight and how the subsequence occurs in each string. NGKs
map strings to a feature space where each dimension corresponds to a substring
of length n, or n-gram. The value of the dimension depends on how many of
each n-gram the string contains.

2

These kernels, however, have limitations. That is, these kernels are not suit-
able when the label of the texts depend not only on some relevant pattern (sub-
string or subsequence) appearing in the texts, but on the order of such relevant
patterns. For example, assume that labels of texts are positive if the word “aab”
appears, followed by another word “aba”. For such tests, NGKs cannot capture
the order of strings in the texts. SSKs takes into account the orders of subse-
quences, but cannot capture the order of strings, either. In the case of SSKs, dis-
similar strings may be judged similar due to the dimensions of subsequence. For
example, strings “xxxabcxxx” and “yayybyycy” are clearly different. However,
they may be judged similar because they have the same subsequence dimension
“abc”. Although the SSK resolves this issue by the gap weight, preferring that
each character of the subsequence occur closer together, it cannot handle the
order of two (near-substring) subsequences as in the first example.

In this paper, we propose a new string kernels based on variable-length-don’t-
care (VLDC) patterns [5–7]. A VLDC pattern is an element of Π = (Σ ∪{⋆})∗,
where Σ is alphabet and ⋆ is a wildcard that matches any string. In the running
example, the VLDC pattern ab ⋆ bb ⋆ ba matches abaabbaba by replacing the ⋆’s
with aa and a, respectively. The VLDC pattern gives the best of both worlds and
more, since it contains both the set of substrings and subsequences as a subset.
Unlike NGKs and SSKs, our kernel can handle the situations where the order of
relevant strings influence the labels. Our kernel is not limited to exact matching
substrings as in NGKs, and can also handle the order of two substrings.

The number of VLDC patterns that matches a given string s of length n
is O(22n). We define several versions of kernels based on the VLDC pattern,
and propose algorithms that compute kernels, for example, for a given a pair of
strings in O(max{n4, ℓ2ℓ|Σ|ℓ}) time and O(n4) space, where ℓ is the length of
VLDC patterns and n is the maximum length of given strings. Unfortunately,
the time and space complexity of computing VLDC kernels are still quite high
to apply for large data, but our kernels can be applied for data of small size in
reasonable computation time.

We show the running times of VLDC kernel computation in a preliminary
experiment, and compare with that of SSKs, using random text data. Our main
experiment is a comparison of the performance in text classification, using spam
data. The experiment shows that VLDC kernels outperform both SSKs and
NGKs.

2 Preliminaries

2.1 VLDC Patterns

Let Σ be a finite alphabet of size σ. An element of Σ∗ is called a string. Strings
x, y and z are said to be a prefix, substring, and suffix of the string u = xyz.
The length of any string u is denoted by |u|. Let ε denote the empty string, that
is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The i-th character of a string u is denoted by
u[i] for 1 ≤ i ≤ |u|, and the substring of u that begins at position i and ends at
position j is denoted by u[i, j] for 1 ≤ i ≤ j ≤ |u|.

3

Let ⋆ denote a special symbol called a variable length don’t care (VLDC) or
a wildcard, which matches any string in Σ∗. Let Π = (Σ ∪{⋆})∗. Any element p
of Π is called a variable-length-don’t-care pattern (or a VLDC pattern in short).
The length of any VLDC pattern p, denoted |p|, is the number of characters plus
the number of ⋆’s contained in p.

Definition 1. For any string x ∈ Σ∗ and any VLDC pattern p ∈ Π, p is said
to match x iff x is obtained by replacing the ⋆’s in p with some strings in Σ∗.
We write p ≼ x when p matches x.

Since ⋆ matches the empty string ε, for any string x ∈ Σ∗ there are an
infinite number of VLDC patterns matching x. To limit the number of VLDC
patterns matching x, consider the subset Π ′ ⊂ Π of VLDC patterns which start
and end with ⋆ and contain no consecutive ⋆’s. For instance, ⋆a ⋆ b⋆ ∈ Π ′ but
⋆a ⋆ ⋆b⋆ /∈ Π ′ and a ⋆ b⋆ /∈ Π ′.

Definition 2. For any string x ∈ Σ∗, we define P (x) by

P (x) = {p ∈ Π ′ | p ≼ x}.

For any string x of length n, the size of P (x) is O(2n−1σn). Note that P (x) still
contains all interesting VLDC patterns matching x, and contains only those.
Using the running example, ⋆a ⋆ b⋆ ∈ Π ′ matches a string x if and only if
⋆a⋆⋆b⋆ /∈ Π ′ matches x. Also, we have that ⋆a⋆b⋆ ∈ Π ′ matches x if a⋆b⋆ /∈ Π ′

matches x (the opposite is not true).
For each VLDC pattern p, we consider the multiset of the “maximal run” of

characters of Σ in p, as follows.

Definition 3. For any VLDC pattern p ∈ Π ′, we define the multiset Con(p) of
strings as

Con(p) =

{
{w1, . . . , wn} if p = ⋆w1 ⋆ · · · ⋆ wn⋆ and wi ∈ Σ+ (1 ≤ i ≤ n),
∅ if p = ⋆.

2.2 Support Vector Machines and Kernels

In this subsection, we review the outline of Support Vector Machines(SVMs)
and kernels. SVMs are a machine learning algorithm based on the idea of a
kernel mapping, and were introduced by Boser et al [8]. This methods learn the
hyperplane in order to separate two sets of points so as to maximize the margin
distance, using several statistic properties. One of its properties is the mapping
to high dimensional feature space, that shape the performance of SVM. So called
kernels, denoted by

K(s, t) = ϕ(s) · ϕ(t),

are used in this method. The function K(s, t) calculates the inner product be-
tween instance s and t in a high dimensional feature space defined by a mapping
ϕ.

4

3 VLDC Kernels

For a given string, we first define the VLDC kernel which considers the hyper-
space where each dimension represents a VLDC pattern and its value is 1 if
the pattern matches the string, and 0 otherwise. Thus, the kernel can then be
defined as the number of VLDC patterns that match both strings.

Definition 4 (VLDC Kernel). For any strings s, t ∈ Σ∗, we define the VLDC
kernel K(s, t) by

K(s, t) =
∑

p∈Π′

δ(p, s, t),

where

δ(p, s, t) =

{
1 if p ∈ P (s) ∩ P (t),
0 otherwise.

In many situations, it is more natural to prefer patterns where the occurrence
of each character is closer together, in order to better capture the characteristics
of the text. In the SSKs, this is achieved through gap weights. For the VLDC
kernel, we can achieve this by preferring longer contiguous constant parts in the
VLDC pattern, as follows:

Definition 5 (Weighted VLDC Kernel). For any strings s, t ∈ Σ∗, we de-
fine the weighted VLDC kernel K ′(s, t) by

K ′(s, t) =
∑

p∈Π′

δ′(p, s, t),

where

δ′(p, s, t) =

{∑
x∈Con(p) λ|x| if p ∈ P (s) ∩ P (t) and Con(p) ̸= ∅,

0 otherwise,

for some λ > 1.

For the weighted VLDC kernel, we also consider a version where the length
of the VLDC pattern is limited, keeping the calculation tractable.

Definition 6 (Length Restricted Weighted VLDC Kernel). For any strings
s, t ∈ Σ∗, we define the length restricted weighted VLDC kernel K ′′

ℓ (s, t) by

K ′′
ℓ (s, t) =

∑
p∈Π′

δ′′(p, s, t, ℓ),

where

δ′′(p, s, t, ℓ) =

{∑
x∈Con(p) λ|x| if p ∈ P (s) ∩ P (t), Con(p) ̸= ∅ and |p| ≤ ℓ,

0 otherwise,

for some λ > 1 and ℓ ≥ 1.

5

We can also restrict the number of wildcards (VLDCs) used in the pattern,
as follows.

Definition 7 (Wildcard Restricted Weighted VLDC Kernel). For any
strings s, t ∈ Σ∗, we define the wildcard restricted weighted VLDC kernel
K ′′′

r (s, t) by
K ′′′

r (s, t) =
∑

p∈Π′

δ′′′(p, s, t, r),

where

δ′′′(p, s, t, r) =

{∑
x∈Con(p) λ|x| if p ∈ P (s) ∩ P (t), 0 < |Con(p)| ≤ r + 1,

0 otherwise,

for some λ > 1 and r ≥ 1.

4 Algorithms to Compute VLDC Kernels

In this section we present our algorithms to compute string kernels based on
VLDC patterns introduced in the previous section.

We use the following data structure in our algorithms.

Definition 8 (WDAWG). The Wildcard DAWG (WDAWG) of a string x,
denoted WDAWG(x), is the smallest automaton that accepts all VLDC patterns
p ∈ Π such that p ≼ x.

WDAWG(x) with x = abbab is shown in Fig. 1.
By definition, every VLDC pattern q ∈ P (x) is accepted by WDAWG(x).

This implies that there is always a path spelling out q from the initial state of
WDAWG(x).

Theorem 1 ([9, 10]). For any string x of length n, WDAWG(x) requires O(n2)
space and can be constructed in linear time in the output size.

Using WDAWGs we obtain the following results:

Theorem 2. For any strings s and t, K(s, t) can be computed in O(n5) time
and space, where n = max{|s|, |t|}.

Proof. It follows from Theorem 1 that WDAWG(s) and WDAWG(t) can be
constructed in O(n2) time and space. Then we can easily construct a DFA which
accepts every element of P (s)∩P (t) by combining WDAWG(s) and WDAWG(t).
The size of such a DFA will be O(n4) in the worst case. Furthermore, since
K(s, t) =

∑
p∈Π δ(p, s, t) = |P (s) ∩ P (t)|, K(s, t) can be computed by a simple

linear-time depth-first traversal on the combined DFA, to count the number of
paths from the initial state to all accepting states which start and end with ⋆
and contain no consecutive ⋆’s. However, since the number of such paths can
be very large, that is, up to O(2nσn), treating these numbers at each state can
require up to O(n) time and space. Therefore, K(s, t) can be calculated in a
total of O(n5) time and space in the worst case. ⊓⊔

6

a b

b

b

b

b

b

a

a

a

a

a
a

b

b
b

a b

b

Fig. 1. WDAWG(x) with x = abbab.

Theorem 3. For any strings s and t, K ′(s, t) can be computed in O(n22n) time
and O(n4) space, where n = max{|s|, |t|}.

Proof. For each VLDC pattern p ∈ P (s) ∩ P (t) with Con(p) ̸= ∅, we need to
compute δ′(p, s, t) =

∑
x∈Con(p) λ|x|. Hence we execute a depth-first traversal

on the DFA for all the paths from the initial state to all accepting states which
start and end with ⋆ and contain no consecutive ⋆’s. There are O(22n) such
paths. At each state corresponding to VLDC pattern p, the value of δ′(p, s, t)
can be computed in O(n) time utilizing information of the parent state in the
traversal. Overall, the total time cost is O(n2nσn). The value of K ′(s, t) grows
up to O(22nλn) which requires O(n) bits. Thus the space requirement is bounded
by O(n4), the size of the combined DFA. ⊓⊔

Due to the above theorem, computing the weighted VLDC kernel K ′(s, t) is not
feasible for large n (long strings). However, the next theorem states that the
length restricted weighted VLDC kernel K ′′

ℓ (s, t) is computable in cases where ℓ
is small.

Theorem 4. For any strings s, t and integer ℓ, K ′′
ℓ (s, t) can be computed in

O(max{n4, ℓ2ℓσℓ}) time and O(n4) space, where n = max{|s|, |t|}.

Proof. Since we have only to consider the VLDC patterns of length at most ℓ, the
total number of paths we traverse in the DFA is O(2ℓσℓ). At each state p we need
O(ℓ) time to compute δ′′(p, s, t, ℓ). Hence the time cost is O(max{n4, ℓ2ℓσℓ}).
The space requirement is O(n4) since ℓ ≤ n. ⊓⊔

The wildcard restricted VLDC kernel K ′′′
r (s, t) is also computable when r is

small, since:

7

Theorem 5. For any strings s, t and integer r, K ′′′
r (s, t) can be computed in

O(nr+1r) time and O(n4) space, where n = max{|s|, |t|}.

Proof. The number of VLDC patterns which have at most r wildcard symbols
⋆ and match both s and t is

O(
r∑

i=2

×n−1Ci−2 × n2(i − 1)) = O(nrr).

Since at each state p we need O(n) time to compute δ′′′(p, s, t, r), the total time
cost is O(nr+1r). The space requirement is O(n4) since r ≤ n. ⊓⊔

5 Computational Experiments

In this section, we compare our VLDC kernels with SSK and NGK by experi-
ments.

5.1 Time Comparison

Firstly, we show our experiments for comparison of computational times with
randomly generated strings. The parameters of random strings are the alphabet
size such as 4, 25 and 52 and string length such as 100, 200, · · · , 500. We
compare the length restricted VLDC kernel K ′′ with SSK. The lengths of the
VLDC patterns for K ′′ and the subsequence for SSK are set to 5, 10 and 15. We
utilized the SSK algorithm of [4]. We used a CentOS Linux desktop computer
with two 3GHz dual core Xeon processors and 16GB memory.

Table 1 shows the running times (sec) for computing the length restricted
VLDC kernel K ′′ for each VLDC pattern length. We have not computed kernel
values for the cells with “-”, since it will take too much time. Since our algorithm
traverses all possible paths in the DFA where each state has at most σ transitions,
the running time grows exponentially with respect to the alphabet size σ (see
Theorem 4). Table 2 shows the running times (sec) for computing the SSK
for each subsequence length. The running time of the SSK algorithm does not
depend on the alphabet size.

5.2 Performance Comparison

We evaluated the performances of our VLDC kernels K and K ′′, compared to
other kernels SSK and NGK. The classification algorithm we used was a free
software SVMlight1.

The values of our VLDC kernels may be huge, and thus we used the normal-
ized value K for K, as follows:

K(s, t) =
K(s, t)√

K(s, s)K(t, t)
,

1 http://svmlight.joachims.org/

8

Table 1. Computational times (sec) of the VLDC Kernel K′′ values for random strings,
with alphabet sizes 4, 26 and 52 and string lengths 100, 200, · · · , 500. The the VLDC
pattern length parameter ℓ was set to 5, 10 and 15. We did not compute the kernel
value for each cell marked with “-”, as it will apparently take too much time.

alphabet VLDC pattern string length
size length 100 200 300 400 500

5 0.1125 0.7650 1.7250 2.9150 4.7250
4 10 0.1156 0.7356 1.4467 2.7500 4.5633

15 0.3500 1.3500 1.900 3.3100 5.1300

5 0.1550 0.9525 2.1350 3.8725 6.4475
26 10 6.6400 34.2989 41.5500 49.6400 58.1067

15 7468.7900 - - - -

5 0.2175 1.445 3.5825 6.8050 11.2750
52 10 24.2500 307.26 859.6867 1530.8200 2098.3830

15 - - - - -

Table 2. Computational times (sec) of the SSK value for random strings, with alpha-
bet sizes 4, 26 and 52 and string lengths 100, 200, · · · , 500. The subsequence length
parameter in SSK was set to 5, 10 and 15.

alphabet subsequence string length
size length 100 200 300 400 500

5 0.0004 0.0040 0.0132 0.0244 0.0384
4 10 0.0012 0.0120 0.0256 0.0504 0.0736

15 0.0036 0.0184 0.0452 0.0780 0.1216

5 0.0000 0.0040 0.0116 0.0212 0.0356
26 10 0.0020 0.0108 0.0272 0.0500 0.0792

15 0.0020 0.0180 0.0404 0.0712 0.1180

5 0.0004 0.0040 0.0116 0.0228 0.0368
52 10 0.0012 0.0108 0.0264 0.0488 0.0760

15 0.0020 0.0172 0.0388 0.0720 0.1144

where s, t ∈ Σ∗. The normalized value K ′′ for K ′′ is defined similarly.
In our experiments, we used spam data collected from the forum of Yahoo!

Japan Finance2, which were also used in [11]. We used 4 data sets of forum ID
“4936”, “4974”, “6830”, and “8473”. The website contains a lot of spam mes-
sages, and the administrators watch over the forums and delete spam messages.
We classified the deleted messages as spam and other remaining messages as
non-spam. In order for our algorithms to run in a reasonable amount of time,
we only used messages of length at most 200 in each data set. Table 3 shows the
number of instances (messages) in each data set.

In Table 4, we show the accuracy (%) of classification with our VLDC kernels
K, K ′′, SSK and NGK. The length restricted VLDC kernel K ′′, SSK and NGK

2 http://quote.yahoo.co.jp

9

Table 3. The number of instances in each data set.

ID spam nonspam

4296 24 48

4974 4 14

6830 28 102

8473 22 84

require the following parameters; K ′′: VLDC pattern length ℓ and weight λ,
SSK: subsequence length and gap weight, NGK: substring length.

Shorter patterns tend to give good performances for all kernels except for K
which has no length parameter. The weight parameter λ of K ′′ was the best with
λ = 2.0. Observe that, for all the forums, our length restricted VLDC kernel K ′′

shows the best performance.

6 Conclusions and Future Work

In this paper we proposed four types of string kernels based on VLDC patterns.
Firstly, we introduced the VLDC kernel based on the all common VLDC pat-
terns for a given pair of strings. This kernel is computable in O(n5) time and
space, where n is the input string length. The needlessness of parameters for
pattern length or weights is a merit of this kernel. Secondly, the weighted VLDC
kernel was introduced, in which the consecutive constant characters are weighted
according to the length of the consecutiveness. This kernel requires O(n22n) time
and O(n4) space. The third kernel, the length restricted weighted VLDC kernel,
has a parameter ℓ for the length of VLDC patterns, and thus is computable in
O(max{n4, ℓ2ℓσℓ}) time and O(n4) space. Lastly, we also proposed the wildcard
restricted weighted VLDC kernel where the number of ⋆’s in each VLDC pat-
tern is restricted by a parameter r. This kernel can be computed in O(nr+1r)
time and O(n4) space. We evaluated performances of our VLDC kernels for the
computation time and text classification ability by experiments. Computing our
VLDC kernels took longer time than SSKs and NGK. VLDC kernels, however,
outperformed SSK and NGK in the classification accuracy in the spam detecting
experiments.

Our VLDC kernels are shown to have high potential to classify text data.
However, their computational complexities may be too large to apply to large
text datasets. We are currently investigating ways to lower this complexity, while
still retaining the high classification accuracy.

Rational Kernels [2, 3] are known to be able to classify regular languages.
We would also like to investigate the expressiveness of our VLDC kernels in this
direction, and determine the class of languages that they can classify.

10

Table 4. The performances of VLDC kernels K, K′′, SSK and NGK. Each cell shows
the accuracy(%) by SVMlight. In the results of the length restricted VLDC kernel K′′,
“length” means the VLDC pattern length ℓ and “weight” means consecutive string
weight λ > 1. In the results of SSK, “length” means subsequence length, and “weight”
means the gap weight 0 < δ < 1. In the results of NGK, “length” means substring
length, and NGK needs no string weight parameters.

data set ID
Kernel Length Weight 4296 4974 6830 8473

VLDC K 66.67 77.78 80.00 79.25

1.1 68.06 77.78 91.54 95.29
5 1.5 68.06 77.78 91.54 95.29

VLDC K′′ 2.0 76.39 72.23 93.08 96.23
1.1 66.67 72.23 89.23 93.40

10 1.5 66.67 72.23 89.23 93.40
2.0 66.67 72.23 89.23 93.40

0.1 63.89 77.78 70.77 79.25
0.3 66.67 72.23 76.93 86.79

5 0.5 66.67 72.23 83.08 89.62
0.7 69.45 72.23 67.69 86.80
0.9 69.44 66.67 62.31 67.92
0.1 66.67 50.00 79.24 51.89
0.3 50.00 72.23 74.62 78.31

SSK 10 0.5 66.67 72.23 76.92 81.14
0.7 66.67 72.23 82.31 83.97
0.9 66.67 72.23 78.46 79.25
0.1 66.67 77.78 21.54 20.75
0.3 66.67 50.00 78.46 79.25

15 0.5 66.67 72.23 76.92 79.25
0.7 65.28 72.23 83.08 79.25
0.9 66.67 77.78 82.31 79.25

5 70.84 72.23 90.00 92.46
6 70.84 72.23 90.00 89.63

NGK 7 69.45 72.23 89.23 88.68
8 69.45 72.23 90.00 87.74
9 69.45 72.23 88.46 85.85
10 69.45 72.23 86.92 84.91

11

References

1. Leslie, C.S., Eskin, E., Weston, J., Noble, W.S.: Mismatch string kernels for svm
protein classification. In: Advance in Neural Information Processing Systems 15.
(2002) 1417–1424

2. Cortes, C., Haffner, P., Mohri, M.: Rational kernels: Theory and algorithms. Jour-
nal of Machine Learning Research 5 (2004) 1035–1062

3. Cortes, C., Kontorovich, L., Mohri, M.: Learning languages with rational kernels.
In: Proceedings of the 20th Annual Conference on Learning Theory. (2007) 349–364

4. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. Journal of Machine Learning Research 2 (2002)
419–444

5. Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering
best variable-length-don’t-care patterns. In: Proceeding of the 5th International
Conference Discovery Science(DS). Lecture Notes in Computer Science (LNCS)
(2002) 86–97

6. Rahman, M.S., Iliopoulos, C.S., Lee, I., Mohamed, M., Smyth, W.F.: Finding pat-
terns with variable length gaps or don’t cares. In: Proc. 12th Annual International
Computing and Combinatorics Conference (COCOON’06). (2006) 146–155

7. Navarro, G., Raffinot, M.: Fast and simple character classes and bounded gaps
pattern matching. Journal of Computational Biology 10(6) (2003) 903–923

8. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: COLT ’92: Proceedings of the fifth annual workshop on Computa-
tional learning theory, ACM (1992) 144–152

9. Inenaga, S., Takeda, M., Shinohara, A., Hoshino, H., Arikawa, S.: The minimum
DAWG for all suffixes of a string and its applications. In: Proceeding of 13th
Annual Symposium on Combinatorial Pattern Matching(CPM). Volume 2373 of
Lecture Notes in Computer Science (LNCS). (2002) 153–167

10. Inenaga, S., Shinohara, A., Takeda, M., Bannai, H., Arikawa, S.: Space-economical
construction of index structures for all suffixes of a string. In: Proceeding of
27th International Symposium on Mathematical Foundations of Computer Sci-
ence(MFCS). Volume 2420 of Lecture Notes in Computer Science (LNCS). (2002)
341–352

11. Narisawa, K., Bannai, H., Hatano, K., Takeda, M.: Unsupervised spam detection
based on string alienness measures. In: Proceeding of the 10th International Con-
ference Discovery Science(DS). Lecture Notes in Computer Science (LNCS) (2007)
159–172

